The author will present an overview of secondary neutrons in proton therapy. In particular, she will discuss the wide variability of data in the literature and focusing on the variability in measurement techniques used in different studies. Additionally, the presentation will compare the secondary neutrons encountered in scanning beam and passive scatter proton therapy and high energy photon therapy.

Rebecca M. Howell, PhD, is a tenured Associate Professor at The University of Texas MD Anderson Cancer Center. Dr. Howell was elected Fellow of the American Association of Physicists in Medicine (AAPM) last year. She received her MS (2001) and PhD (2005) from the University of Texas Health Science Center San Antonio. Dr. Howell is certified by the American Board of Radiology and has 15 years of clinical experience. She has published 50 peer-reviewed papers and is Principal and Co-investigator on several funded research grants from the National Cancer Institute and other funding agencies. Her research focuses on out-of-field dose and late effects of radiation therapy.
Secondary Neutrons in Proton Therapy

Presented by:
Rebecca M. Howell
PhD, DABR, FAAPM
Background
Treatment Planning in Radiation Therapy

- Standard of care: commercial TPS used to calculate patients’ treatment plans (all RT types)

- Accuracy
 - High-dose regions and areas within the primary beam path are typically well described (accuracy ± 2%)
 - Low-dose regions
 - Accuracy beyond a few centimeters outside the treatment field edge is usually poor
 - Secondary neutrons are not considered
Secondary Neutrons
Photon Therapy
External Neutrons in Photon Therapy

(γ,n) in High-Z Materials

- Primary collimator
- Target
- Flattening filter*
- Secondary jaws
- MLC**

Khan (2010)
Photon Beam Energy
Effect on Neutron Production

- Bremsstrahlung photon beams
 - Wide distribution of energies
 - Max energy \(\approx\) energy of electron beam on the target.

18MV Bremsstrahlung Photon Spectrum

- 6 MeV \(\sim\) threshold \((\gamma,n)\) in high-Z materials
- Probability of a \((\gamma,n)\) increases with photon increasing energy
Secondary Neutron Spectra from Clinical Photon beams

- Energy distribution in the linac head ~ isotropic resembles a fission spectrum.
- Softens, as neutrons undergo interactions in the linac head, patient, and treatment vault.

Secondary Neutron Spectra from Clinical Photon beams

- Similar energy distribution for all photon beams
- Fluence increases with increasing photon beam energy

Internal Neutrons in Photon Therapy

• (γ,n) in low-Z Materials is negligible compared to high-Z materials
 – Higher threshold energies:
 • ^{16}O (17 MeV)
 • ^{12}C (19 MeV)
 • ^{14}N (8 MeV)
 – Lower x-sections (20X - 30X ↓)

• Essentially no neutron production in patient
 – Exception high-z implants, e.g., hip prosthesis
Secondary Neutrons
Proton Therapy
External Neutrons in Proton Therapy

\((p,n)\) in High-Z Materials

- Double scatterer
- Modulation wheel (SOBP)
- Compensator
- Field aperture
External Neutrons in Proton Therapy

Spot Scanned Beamline

- Less high-Z materials in beamline
 - Less neutron production
Internal Neutrons in Proton Therapy

- \((p,n)\) in low-Z Materials is important and non-negligible downstream of the target and within 10 cm of field edge.
 - In passive scatter, can contribute \(\sim 50\%\) of the dose equivalent.
 - In spot scanning, dominant source neutron dose.

- Internal neutron production with:
 - **Beam energy** due to higher \((p,n)\) cross sections.
 - **Field size** because the proton beam is incident on a larger volume of tissue.
Secondary Neutron Spectra from Clinical Proton beams

• Similar energy distribution for all proton beams

Relative peak heights differ at different relative positions from isocenter, as beam softens.

• Greater high energy component
 - Along beam path (than off axis)
 - Closer to isocenter
Published Data
Secondary Neutrons in PRT

• How much secondary neutron dose results from PRT???

• Substantial published data on out-of-field neutron dose from PRT.

• but data highly variable spanning orders of magnitude....
General Questions to Consider when Evaluating Neutron Data

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• How were the data measured?</td>
<td>• Was the model appropriately validated against “good”</td>
</tr>
<tr>
<td>• Was the detector sensitive to neutrons over the entire energy range?</td>
<td>measurements?</td>
</tr>
<tr>
<td>• If an active detector was used, was pulse pile-up a potential issue?</td>
<td></td>
</tr>
<tr>
<td>– If yes, was it appropriately accounted for?</td>
<td></td>
</tr>
<tr>
<td>• If in phantom, was the change in spectrum with increasing depth taken into</td>
<td></td>
</tr>
<tr>
<td>account?</td>
<td></td>
</tr>
</tbody>
</table>
Neutron Measurement Techniques
Detector Energy Response
In the Context of Spectra being Measured

Photon Therapy
- Thermal to \(\sim 10\) MeV

Proton Therapy
- Thermal to max proton energy, e.g., 250 MeV
Neutron Detection Techniques

- The vast majority of neutron detectors are only able to detect thermal neutrons.

- **Active Detection**
 - $^{10}\text{B}(n,\alpha)$
 - $^{6}\text{Li}(n,\alpha)$
 - $^{3}\text{He}(n,p)$

- **Passive Detection**
 - Thermoluminescent Dosimeters (TLD)
 - Activation Foils (^{198}Au and ^{111}In)

- Modified response based when embedded in various moderators (low-Z and high-Z).
Systems of Moderators

• By varying the thickness of this moderating material, the detector becomes optimized for specific neutron energy ranges.

Tedious measurement system: repeat measurements with each sphere and then de-convolve data to determine spectrum.
Response Functions for 2” to 12” Moderators

- For all spheres, response begins to drop above 10 MeV.
- Suitable for measuring secondary neutrons from photon therapy.

What about PRT???
Extended Range Bonner Spheres

- Increase sensitivity to high energy neutrons by adding high-Z materials with large \((n,xn)\) cross sections.

1. NEMUS

2. CERN

1. Bonner Sphere Extension

Bonner Sphere Extension
Neutron Survey Meters

- Active thermal neutron detector (often BF$_3$) surrounded by a low-Z moderator.

Energy Response
- 1 MeV, response ~ 1
- 0.1 - 10 MeV, response 1.5 – 0.5
 - Under/over response within 50%
- > 10 MeV, response rapidly decreases with increasing energy.
 - Underresponse $\sim 6X$ at 100 MeV.

For PRT, underestimate dose:
- No response to neutrons from 10 MeV - max proton energy.
Extended Range Neutron Survey Meters

- Active thermal neutron detector surrounded by a low-Z moderator + Pb or W to extend high energy response.

Energy Response

- WENDI-II
 - 2 – 10 Mev and 100 – 300 MeV, response ~ 1
 - 10 – 100 MeV under-responds by as much as 40%
- PRESCILA generally over-responds

For PRT:
- WENDI-II is reasonable detector, but still has uncertainty due to variable response, but generally within 50%.
Fast Neutron Detectors
Bubble Detectors

- Small sealed tube with superheated droplets of liquid dispersed throughout a polymer.
- When neutrons strike a droplet, 2°cp are emitted that vaporize the droplet, producing a bubble.
- Neutron dose determined by counting the bubbles and applying a calibration factor.

Advantages
- Easy to use
- High sensitivities
- Reusable
- Instantaneous reading

BD-PND (BTI Bubble Technology Industries, Ontario Canada)
Fast Neutron Detectors
Bubble Detectors

Energy Response:

- Somewhat uniform response to neutrons over the energy range of 100 keV–10 MeV.
- At energies < and > this range, the response decreases rapidly.

For PRT, underestimate dose:

- No response to neutrons from 10 MeV - max proton energy.
- Further complicated In phantom neutrons lose energy rapidly limited response < 100 keV
Fast Neutron Detectors
Track Etch Detectors

- Solid-state nuclear track etch detectors are made of polymers that include mainly H, C, and O, e.g., CR-39 polymer.

- When a neutron interacts in these materials, the recoil nuclei from the constituent materials leave behind microscopic damage trails, or tracks.

- Chemical processing (etching) is used to enlarge the tracks.

- The track density can then be scored and neutron dose determined using a calibration factor.
Fast Neutron Detectors
Track Etch Detectors

Energy Response:

- For most track etch detectors, response falls off above ~ 6 – 10 MeV.
- PN3 does respond above 10 MeV, but response is complexly energy dependent.

For PRT, underestimate dose:

- Most underestimate dose due to limited/no response to neutrons from 10 MeV - max proton energy.
- PN3 have successfully been used, but must account for energy dependence.
Special Considerations
In-phantom Measurement Challenges

• Neutron detectors with moderators are too large for phantom measurements.

• But for those that are small enough….
 – Neutrons rapidly lose energy in phantom due to scatter with low-Z media.
 – Detector responses to different neutron energies can vary by several orders of magnitude.
 – Thus, incomplete consideration of the detector response or neutron spectrum being measured can easily result in errors of several orders of magnitude.
Variations in the Neutron spectrum as a Function of Depth in Tissue

- Let’s consider the examples of TLD 600 & bubble detectors in the context of these data....
Clinical Proton Beam Therapy
Cranial Spinal Irradiation
• Dose from secondary neutrons is of particular concern in proton CSI because:
 – almost universally utilized for children and adolescents,
 – who often survive many decades following diagnosis, and
 – are at significant risk of RT-related late effects.
Passive Scatter Beamline - Mevion

- **Measure Clinical Scenarios**

<table>
<thead>
<tr>
<th>Field type</th>
<th>Gantry angle</th>
<th>Couch angle</th>
<th>Aperture size</th>
<th>% blocked</th>
<th>Range (cm)</th>
<th>Modulation (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole brain</td>
<td>90</td>
<td>270</td>
<td>large</td>
<td></td>
<td>51.5</td>
<td>17</td>
</tr>
<tr>
<td>Upper spine</td>
<td>0</td>
<td>270</td>
<td>large</td>
<td></td>
<td>57.5</td>
<td>10</td>
</tr>
<tr>
<td>Lower Spine</td>
<td>0</td>
<td>270</td>
<td>large</td>
<td></td>
<td>61.2</td>
<td>10</td>
</tr>
</tbody>
</table>

Diagram:
- Gantry angles for different field types.
- Couch angles for different field types.
- Aperture sizes for different field types.
- % blocked for different field types.
- Range (cm) for different field types.
- Modulation (cm) for different field types.
Passive Scatter Beamline - Mevion

Fluence

- Whole Brain (total)
- Upper Spine (total)
- Lower Spine (total)
- Whole Brain (external)
- Upper Spine (external)
- Lower Spine (external)
Passive Scatter Beamline - Mevion

Ambient Dose Equivalent
- Whole Brain (total)
- Upper Spine (total)
- Lower Spine (total)
- Whole Brain (external)
- Upper Spine (external)
- Lower Spine (external)

H*(10): 2.27 to 3.92 mSv/Gy
What about Scanning Beam?

How much lower are the neutron doses compared to passive scatter?

- EURADOS WG 9 Comprehensive Study
- IBA beamline (Krakow, Poland)
 - measured 10 spectra
 - Two proton energies 100 and 144 MeV
 - 2 different ERBSS
 - High value: 2.7 μSv/Gy at 1.6 m
 - Low value: 0.52 μSv/Gy at 3.35 m
Passive Scatter versus Scanning Beam

External Neutrons
- Doses from neutrons generated external to the patient are highly dependent on the
 - proton beam incident on the patient, which depends on:
 - the design of the proton therapy machine itself and
 - treatment-specific devices within the beamline.

Internal Neutrons
- Doses from neutrons generated within the patient increase with:
 - beam range and
 - treatment volume irradiated (i.e., field size).

mSv/Gy versus μSv/Gy
Secondary Neutrons
Protons versus Photons
Photons versus Protons

<table>
<thead>
<tr>
<th>Protons</th>
<th>Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Narrow proton energy distribution</td>
<td>- Wide photon energy distribution</td>
</tr>
<tr>
<td>- ((p,n)) in both high-Z and low-Z</td>
<td>- ((\gamma,n)) in high-Z</td>
</tr>
<tr>
<td>- External and Internal neutron production</td>
<td>- External neutrons</td>
</tr>
<tr>
<td>- Patient dose:</td>
<td>- No ((\gamma,n)) in low-Z</td>
</tr>
<tr>
<td>- (\mu)Sv – mSv per Gy</td>
<td>- No internal neutrons</td>
</tr>
<tr>
<td></td>
<td>- Patient does</td>
</tr>
<tr>
<td></td>
<td>- mSv/Gy (varies over ~3X for CRT, IMRT, FFF)</td>
</tr>
</tbody>
</table>
Proton CSI | Photon CSI

Compare 21Gy RX

- For a PRT example of 5 mSv/Gy $\Rightarrow 10.5\text{cSv}$
- For CRT FIF plan, entire abdomen is covered by 50% isodos line, i.e., 10 Gy
Data Span Orders of Magnitude

Underestimated, likely due to inadequate detection of high energy neutrons.
What’s Recommended?
American Association of Physicists in Medicine

For Neutron Research

1. Optimal neutron dosimetry consists of in air spectra measurements

2. Monte Carlo is well-suited for in-patient/phantom neutron dose calculations, but the model must be first validated against in-air neutron measurements

3. Neutron measurements in-patient/phantom, particularly those based on thermal neutron detection, should account for the spatial variations in the neutron energy spectrum

4. Low-energy neutron detectors (e.g., standard Bonner spheres, most track etch detectors, bubble detectors, etc.) should not be used in proton beams. Appropriate detectors include extended-range Bonner sphere systems, SWENDI detectors, and TEPCs
For Clinical Concerns Regarding Neutrons

- Neutron dosimetry requires high levels of expertise and is prone to very large errors if techniques are performed incorrectly.

- Neutron measurements should only be conducted when there is a thorough understanding of neutron dosimetry and the dosimeter being used (particularly the spectrum being measured and the energy response of the detector).

- In lieu of this, previously published data should be used to get a reasonable estimate.
What’s needed?

- A comprehensive measurement campaign of the various PRT beamlines, several beamlines with similar (as possible) experimental design as possible.....
Thank you

• and stay tuned for......

• AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy
Memories from ICRS-10
References

- PAPER
- Physics in Medicine and Biology, 61 (2016)

