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Abstract. Based on the physics of stochastic processes we present a new approach for structural health
monitoring. We show that the new method allows for an in-situ analysis of the elastic features of a mechan-
ical structure even for realistic excitations with correlated noise as it appears in real-world situations. In
particular an experimental set-up of undamaged and damaged beam structures was exposed to a noisy exci-
tation under turbulent wind conditions. The method of reconstructing stochastic equations from measured
data has been extended to realistic noisy excitations like those given here. In our analysis the deterministic
part is separated from the stochastic dynamics of the system and we show that the slope of the deter-
ministic part, which is linked to mechanical features of the material, changes sensitively with increasing
damage. The results are more significant than corresponding changes in eigenfrequencies, as commonly
used for structural health monitoring.

1 Introduction

It is a crucial task to achieve an early and reliable detec-
tion of feature-changes of mechanical structures caused by
damage, fatigue, or other environmental influences. Com-
monly, those detection systems use fast Fourier transfor-
mation (FFT) to extract system features [1–3] and to de-
termine the condition of the system from changes in the
eigenfrequencies. One drawback of this approach is that
noisy excitation of the structure broadens the peaks of
the frequency spectrum and thus makes it harder to de-
tect changes reliably. In this paper we present a method
to obtain the dynamical behavior of the system and to an-
alyze changes of the system’s dynamics due to damages.
Our proposed method, which is based on the physics of
stochastic processes, is suitable for in-situ application, as
we show that it is robust against changing working condi-
tions. In particular, we show how to separate the stochas-
tic response dynamics of the system from the deterministic
one. Even for different levels of exciting noise or, respec-
tively, of turbulence, we are able to analyze only the de-
terminism of the system dynamics directly linked to the
mechanical properties of the system.

The paper is organized as follows. First we present the
selected experimental system and its numerical model. In
Section 3 the method and the results are presented.

2 Experimental system

As a simple mechanical system we used a one-sided fixed
beam structure and placed it in the wind tunnel of the
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Fig. 1. Schematic of the beam structure.

University of Oldenburg (cf. Fig. 1). To investigate a tur-
bulent flow-structure interaction, a motor-driven gust gen-
erator was used for the production of the turbulent inflow
conditions. A sphere was mounted on top of the beam
to increase the acting drag force. The deflection of the
structure in the horizontal xy-plane was measured with a
laser diode mounted in the sphere and aimed onto a two-
dimensional position sensitive detector (2D-PSD). This
light pointer principle is known to be highly resolving; it
is used in atomic force microscopy and has recently been
used also for new anemometers [4,5]. Thus, the bending of
the beam in the range of μm can be resolved within μsec.

For our measurements two steel beams were prepared.
While one beam remained undamaged, the dynamical be-
havior of the other beam was changed in two steps. In
the first step the beam was treated thermally, it was
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Fig. 2. Time series of the deflection in y-direction.

heated at red heat and cooled down fast, and in the second
step the beam was cut at a length of 40% of its circum-
ference. For four different wind speeds (7 m/s, 10 m/s,
15 m/s and 17 m/s), time series of ten minutes length
were recorded with a sampling frequency of 30 kHz. From
the measured data the deflection of the beam in x- and
y-direction was calculated. Figure 2 presents a segment of
the measured time series of the deflection in y-direction.

In addition to the experiment a numerical model of the
system has been set up. The beam structure was modeled
by a finite element model in which four elements were
used, three for the beam and one for the sphere. The me-
chanical properties were chosen in accordance with the
parameters of the experimental set-up. To simulate the
damage, the stiffness of the second element was reduced
in several steps up to 70%. The acting forces were cal-
culated from a series of Gaussian distributed white noise
(ūx = 7, ūy = 13, σx,y = 2). The forces were fed into
the model at the nodes, the distribution was calculated
according to the geometry and the drag coefficients. Time
series of ten minutes length were generated at a sampling
frequency of 30 kHz in order to match the parameters of
the experiments.

3 Stochastic analysis

A wide range of dynamic systems (in particular if fluc-
tuating, noisy forces are involved) can be described by
stochastic differential equations, namely, the Langevin
equation [6]

Ẋi(t) = D
(1)
i (X(t)) +

2∑

j=1

[√
D(2)(X(t))

]

ij

Γj(t). (1)

The time derivative of the system variable Ẋ(t) (X ∈ R
n)

can be expressed as a sum of a deterministic part D(1)

and the product of a stochastic force Γ (t) and a weight
coefficient D(2). For an ideal process, the stochastic
force Γ (t) is white noise with zero mean, i.e. it is δ-
correlated and Gaussian distributed. In equation (1) the
symbol [·]ij refers to the element (i, j) of the resulting ma-
trix. Throughout the paper, we apply Itô’s interpretation
of stochastic integrals (cf. [6]).

To show how our experimental situation can be linked
to such a stochastic differential equation, we start with the
idea that the system variable X(t) is the deflection. As we
are interested in the dynamics we propose that for X(t) a

general differential equation

Ẋ = f(X(t), u(t)), (2)

holds. Here f denotes an unknown function characterizing
the dynamics, which depends on the deflection X(t) and
the wind velocity u(t). The turbulent wind velocity acting
on the structure can be split up into the sum of the mean
wind speed ū and its fluctuations u′(t):

u(t) = ū + u′(t) with 〈u′(t)〉 = 0. (3)

The temporal development of X(t) is obtained by
integration

X(t + τ) − X(t) =
∫ t+τ

t

f(X, u(t))dt. (4)

Using the linearization of f(X, u) with respect to u

f(X, u) = f(X, ū) + u′(t)
[
∂f(X, ū)

∂u
+

∂f(X, ū)
∂X

dX

du

]
,

(5)
and that f(X, ū), ∂f

∂u and ∂f
∂X

dX
du are slowly varying for

small τ , equation (4) can be written as

X(t+τ)−X(t) = τf(X, ū)+
[
∂f

∂u
+

∂f

∂X

dX

du

]∫ t+τ

t

u′(t)dt.

(6)
Analyzing experimental data, the mean value of 〈X(t +
τ)−X(t)〉|X(t)=x can be estimated by taking all X(t) val-
ues which are in a close neighborhood to a chosen value x.
This conditional mean is

〈X(t + τ) − X(t)〉|X(t)=x = τf(x, ū) , (7)

using
〈τf(X, ū)〉|X(t)=x = τf(x, ū)

and, using 〈u′(t)〉|X(t)=x = 0 according to equation (3),

[
∂f(x, ū)

∂u
+

∂f(x, ū)
∂X

dX

du

] 〈∫ t+τ

t

u′(t) dt

〉∣∣∣∣
X(t)=x

=

[
∂f(x, ū)

∂u
+

∂f(x, ū)
∂X

dX

du

] ∫ t+τ

t

〈u′(t)〉|X(t)=x dt = 0.

The connection to the Langevin equation (1) can be seen
by expressing the drift and diffusion terms as Kramers-
Moyal coefficients [6], which are the values of the condi-
tional moments for τ → 0:

D
(1)
i (x) = lim

τ→0

1
τ
〈(Xi(t + τ) − xi)〉|X(t)=x

D
(2)
ij (x) = lim

τ→0

1
2τ

〈(Xi(t+τ)−xi)(Xj(t+τ)−xj)〉|X(t)=x.

(8)

Siegert et al. [7] and Friedrich et al. [8] developed a method
to reconstruct drift D(1) and diffusion D(2) (Eq. (8))
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Fig. 3. (Color online) Drift function in y-direction conditioned on x = 0 (a) for three damages at ū = 10m/s (measurement),
(b) for three damages (simulation) and (c) of the cut beam for different wind speeds.

directly from measured data for stationary continuous
Markov processes (for further details see also [9]).

Equation (1) should be interpreted in the way that
for every time t where the system meets an arbitrary but
fixed point x in phase space, X(t+τ) is determined by the
deterministic function D(1)(x) and the stochastic function√

D(2)(x)Γ (t). Both, D(1)(x) and D(2)(x), are constant
for fixed x.

To analyze the dynamical behavior of our set-up only
the deterministic part of the Langevin equation is needed.
From the derivative of equation (7) we see that the func-
tion f(x, ū) corresponds to D(1) and, more important for
practical purpose, it is only essential to require that the
mean of the fluctuations will vanish. This is a much weaker
requirement than requiring delta correlated and Gaussian
distributed noise.

For our measured data we proceed as follows. The x-
and y-coordinates of the deflection of the beam span the
phase space of X(t) which was divided into 40 equidis-
tant bins in each direction (fixing different x-values). The
drift function was calculated with equation (8) point-wise
for each bin resulting in two 40 × 40 matrices for x-
and y-direction. Figure 3a shows a cut in y-direction
through the drift function for the main flow direction
(y-direction) at ū = 10 m/s. The slope of the heated beam
is 6.3% ± 0.7% smaller than of the undamaged one, while
the slope of the cut beam is 28.2%± 1.3% smaller. Larger
errors in the outermost bins are due to the small num-
ber of events in these bins as large deflections are not as
frequent as small ones. Table 1 shows the change of the
slopes of the drift function for all wind speeds. The val-
ues are presented in percental values normalized to the
undamaged values for each wind speed.

From the numerical model simulations a similar be-
havior was found. Figure 3b shows that an increasing re-
duction of the stiffness leads to a decrease of the slope
of the drift. For a reduction of the stiffness by 30% the
slope decreases by 11.6% ± 0.8%, for a reduction of 50%
the decrease is 22.9%± 0.4%.

The change of the slope can be made plausible when
one links the drift to mechanical features of the material

Table 1. Percental values of the slope of the drift function in
y-direction conditioned on x = 0 (normalized to the undam-
aged values for each wind speed).

undamaged heated cut

7 m/s 100.0% ± 1.2% 94.3% ± 1.4% 74.1% ± 1.5%

10 m/s 100.0% ± 0.4% 93.7% ± 0.7% 71.8% ± 1.3%

15 m/s 100.0% ± 1.0% 96.2% ± 1.5% 71.8% ± 0.8%

17 m/s 100.0% ± 1.8% 97.3% ± 1.9% 68.6% ± 0.6%

and interprets it as an indicator of how fast the beam re-
turns to its position of rest. Here it might be noted that the
negative slope of D(1) corresponds to an attraction to a po-
sition of rest defined by the fixed point D(1)(x = 0, y) = 0.
A decreasing restoring force then results in a decreasing
slope of the drift. The cut in the beam means a major de-
crease of its stiffness thus the slope of the drift should
be significantly smaller (D(1) is asymmetric for y < 0
and y > 0, see Fig. 3a; this is likely to be due to the
fact that a cut in a beam leads to asymmetric weaken-
ing of the material, whereas in the numerical model the
weakening in the volume element was symmetric, compare
Fig. 3b).

As the mean wind speed is not constant in free field
conditions, it is important to know if the slope of the drift
changes with respect to the wind speed, or more generally
speaking how D(1) depends on ū. This is particularly im-
portant for our case where we only condition on bins in
x and thus the conditional moments of equation (8) sum
over different ū. The obtained results are shown in Fig-
ure 3c and in Table 1. We conclude that independently of
a questionable or weak dependence of the slope of D(1)

on wind speed, the effect of the damages can be clearly
quantified.

As a next aspect we compare our results with the com-
mon damage detection method using power density spec-
tra. Figure 4a shows the power density spectra of the de-
flection in y-direction for the different beams. The first
eigenfrequency of the beam structure is very pronounced
and the peaks are quite broad due to the noisy excitation.
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Fig. 4. Power density spectra for the deflection signals in y-direction (a) at ū = 10 m/s for different damages and (b) of the
cut beam for different wind speeds.

The shift in the first eigenfrequency for the heated beam is
only 0.6% which is almost undetectable due to the broad-
ened peak. The shift in frequency for the cut beam can
be detected more clearly, it is 13.5%. Compared to the
relative changes in the slope of D(1) of several percent for
the heated and around 30% for the damaged beam, the
frequency analysis is less sensitive.

A comparison with power density spectra for different
wind speeds shows that with increasing wind speed more
and more, eigenfrequencies get excited (cf. Fig. 4b). Tak-
ing also Figure 4a into account, one can see that a damage
excites higher eigenfrequencies in a similar way (addition-
ally we realized that higher harmonics are excited too, if
the measured signal saturates, e.g. by overloading the sen-
sor or by bounded deflection of the structure). The anal-
ysis of higher harmonics of the power spectra to quantify
damages seems to become quite complicated under such
conditions. From a point of view of system dynamics it is
well-known that damped relaxation systems like a beam
structure may perform quite difficult nonlinear response
dynamics under noisy excitations, which even may become
chaotic. Consequently, an analysis by a power spectrum
of such systems is less appropriate than getting access
to the underlying deterministic part of the response dy-
namics. We want to stress the point that our analysis by
Kramers-Moyal coefficients is local in the stochastic vari-
able x, whereas power spectra are global in the sense that
the full range of the phase space variable is processed.

At last, a first estimation of possible resolution of dam-
ages by our method is given. From simulations with sys-
tematic changes of the stiffness, the changes of the slope
of the deterministic part were evaluated as shown in Fig-
ure 5. A damage of 5% is well resolvable. Putting the re-
sults from our experiments into relation of the numerical
studies (see triangles in Fig. 5), the data show that the ob-
tained change in the slope of 6% (cf. Tab. 1) corresponds to
a (numerical) damage of about 15%. Thus, with our pro-
posed method, it should be possible to detect even smaller
damages of the mechanical structure than caused by our
heating procedure.
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Fig. 5. Change of the slope of the drift function for increas-
ing damage (numerical simulation) marked by open circles.
Corresponding damages of the experiments marked by open
triangles.

4 Discussion

We showed that analyzing the deflection of a one-sided
fixed beam structure by means of the reconstruction of the
stochastic differential equation can be fruitful for struc-
tural health monitoring. The slope of the drift function
is a sensitive indicator of the restoring force and thus of
the mechanical properties. The sensitive detection of the
drift function enables to show changes in the mechanical
material properties and thus enables to detect probable
damages. Most interestingly, the method depends on noisy
excitations caused by the environment. Noise helps to en-
large the phase space so that the conditional moments
can be estimated properly. We also show evidence that
the noise itself will be averaged out and will not have any
influence on the absolute values of the deterministic drift
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functions. The ranges over which it can be reconstructed
will be influenced by the noise (cf. Fig. 3c). In this sense
the method is robust against changing working conditions.
We should point out that the deflections of our experimen-
tal set-up are in the range of μm, thus a linear response
can be assumed. For larger deflections further corrections
may have to be taken into account. Compared to the
helpful influence of noise for the stochastic analysis, the
effect of noise for the common analysis by determining
the strength of excited eigenmodes as peaks in the power
spectrum is more complicated and may even cause less
sensitivity.

A very important application of this method are cases
where one has no easy access to the considered system. We
propose that this method can be used for remote diagno-
sis of running, embedded systems. Even changing working
conditions are likely to be mapped onto the noise and
thus will be filtered out by analyzing the drift function. In
principle it should be straightforward to apply the method
to condition-monitoring of other systems and other noisy
excitation forces, like for example parts of a running ma-
chinery. For more complex dynamics like chaotic ones a
higher dimensional phase space has to be used. There are
even methods to verify by data analysis if such a higher
dimensional analysis is required [10].
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