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Abstract. Network theory is increasingly employed to study the structure and behaviour of social, physical
and technological systems – including civil infrastructure. Many of these systems are interconnected and
the interdependencies between them allow disruptive events to propagate across networks, enabling damage
to spread far beyond the immediate footprint of disturbance. In this research we experiment with a model
to characterise the configuration of interdependencies in terms of direction, redundancy, and extent, and
we analyse the performance of interdependent systems with a wide range of possible coupling modes.
We demonstrate that networks with directed dependencies are less robust than those with undirected
dependencies, and that the degree of redundancy in inter-network dependencies can have a differential
effect on robustness depending on the directionality of the dependencies. As interdependencies between
many real-world systems exhibit these characteristics, it is likely that many such systems operate near
their critical thresholds. The vulnerability of an interdependent network is shown to be reducible in a
cost effective way, either by optimising inter-network connections, or by hardening high degree nodes. The
results improve understanding of the influence of interdependencies on system performance and provide
insight into how to mitigate associated risks.

1 Introduction

Network theory is a powerful tool to help us understand
the structure and behaviours of systems found in na-
ture, technology and human society [1–3]. Previous re-
search has tended to focus on studying single, isolated sys-
tems [4–10], thereby neglecting the complex coupling that
can exist between these systems [3,11–15]. For instance,
in the civil infrastructure domain, the successful opera-
tion of a power system requires water for cooling, trans-
port to supply fuel, and ICT (information and communi-
cation technology) systems for control; and these systems
in turn require power systems to supply electricity. This
interdependence on the one hand may improve network
functionality and efficiency, but on the other hand may
introduce unforeseen vulnerabilities. As demonstrated in
references [11,13,16–19], the failure of one network compo-
nent may propagate across the system boundary, resulting
in cascading failure across multiple sectors.

The importance of understanding the effects associated
with network interdependencies has been widely recog-
nised [12,20–29]. Important insights from previous mod-
elling of interdependent systems show that (i) analysis
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of systems with one-to-one undirected dependencies show
that failure initiated in one network can propagate across
networks recursively and lead to a cascading failure of the
wider networked system [12]; (ii) the vulnerability of an
interdependent system is reduced when the extent of cou-
pling between networks decreases [21]; and (iii) traditional
network protection strategies, such as protecting high de-
gree nodes, are less effective in an interdependent network
than in a single network [30].

Previous research has used relatively simple and con-
strained representations of interdependencies that are not
particularly representative of those observed in real-world
systems. Here we present a model that describes coupled
systems as a network of networks. We consider how the
configuration of network interdependencies plays an im-
portant role in determining how failure propagates be-
tween networks, and the ability of the system to absorb
disruptions. The model characterises interdependencies
along multiple dimensions, enabling systems of different
strength of coupling to be represented. We analyse the
behaviour and performance of a range of interdependent
system configurations, and explore strategies to reduce the
risks of cascading failure. Our research reveals a num-
ber of non-intuitive insights into the behaviour of inter-
dependent systems. The severity of cascading failure is
shown to increase significantly when inter-network con-
nections are directed, and the degree of redundancy in
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Fig. 1. Dimensions of interdependency measurement.

inter-network connections can have a differential effect on
the robustness of systems depending on the directionality
of inter-network connections. Network topology also influ-
ences system performance although this is heavily medi-
ated by the mechanism of network disruption. We further
demonstrate that the risks of cascading failure can be re-
duced in a number of ways, either by manipulating the
directionality of inter-network connections, or by harden-
ing high degree nodes.

By providing some quantitative insights into the im-
pact of interdependencies, it is intended that results pre-
sented in the paper could be valuable to stakeholders of
various social-technological systems by providing hitherto
unavailable analysis of how to: (i) maximise the reliability
of interdependent systems; (ii) adapt an existing system
to meet the challenges imposed by natural and manmade
hazards. The remaining parts of the paper are organised
as follows. Section 2 describes the interdependent network
model. Section 3 outlines the model of cascading failure.
Sections 4 and 5 report results derived from the model.
Section 6 discusses how structural vulnerability of inter-
dependent systems can be reduced. Section 7 provides con-
clusions and identifies future research needs.

2 Interdependent network model

Interdependencies in real-world networks are more ho-
mogeneous than previous modelling studies have consid-
ered [31]. Here we present a model that characterises inter-
network dependencies along three key dimensions (Fig. 1),
that enables us to describe and simulate a wide range of
network coupling modes.

We define a “network of networks” that couples
k � 2 disjoint networks and is represented as a
pair {V ,L}, where V = {V1, . . . ,Vj , . . . ,Vk} and L =
{L1,1, . . . ,L1,k, . . . ,Li,j , . . . ,Lk,k}. Vi is the set of nodes
in network i, and Li,j the set of links that connect nodes
from network i to network j. Links in Li,i connect nodes
within the same network, and we call such links the “intra-
links”. When i �= j, links in Li,j connect nodes in two
disjoint networks, and we call such links the “inter-links”,
i.e., interdependent links.

We acknowledge that not every node in a network de-
pends on another network. For example, in a coupled road
and ICT system, some but not all road junctions require
traffic signals (controlled by an ICT system) for their op-
eration. Furthermore dependencies between networks are

unbalanced. For example, a significant portion of a trans-
port network nodes require the support of an ICT network
for control and management, but the number of dependent
nodes of ICT on transport network is considerably small.
Thus, the first dimension of our model considers the extent
of dependency (denoted as F), defined here as the fraction
of network nodes that are dependent on another network1.
For a system consisting of two networks i and j, F is par-
titioned into two components, F i,j and F j,i. The former
specifies the fraction of nodes in network i that depend
on network j. The latter specifies the fraction of nodes
in network j that depend on network i. Two networks i
and j are fully inter-dependent when F i,j = F j,i = 1.0,
otherwise they are partially inter-dependent.

Interdependency relations are not always restricted to
one-to-one. For example, emergency services such as hos-
pitals frequently have multiple power connections, so that
failure of one power line or generator will enable contin-
ued operation. Our second dimension, redundancy of de-
pendencies, K is partitioned into Ki,j and Kj,i, where Ki,j

represents the redundancy of the dependency of network
i on network j, i.e., the average number of supporting
nodes that a dependent node in network i has from net-
work j. Similarly, Kj,i describes the redundancy of the
dependency of network j on network i. As with any net-
work link, an interdependency link has an associated cost,
hence K in real world is usually very small when com-
paring to system size N , (i.e. K � N), as discussed and
evidenced in references [12,26,32,33].

Finally we observed that inter-network dependencies
are not always mutual or symmetric. For example, whilst a
power substation might supply electricity to an ICT hub,
this same hub does not necessarily provide information
control to the power plant. Hence interdependencies can
be quantified in term of directionality. An undirected in-
terdependent link (u, v) ∈ Li,j (i �= j) exists where there
also exists a (v, u) ∈ Lj,i. Otherwise it is directed. We
use parameter D to specify the directionality of an inter-
dependent system. D is partitioned into two components,
Di,j and Dj,i. The former specifies the fraction of directed
dependencies that network i has on network j. The latter
specifies the fraction of directed dependencies that net-
work j has on network i. Systems of two extremes are
identified. One extreme is an undirected system, a system
that is connected by undirected dependencies only, i.e.,
Di,j = Dj,i = 0. Another extreme is a directed system, a
system that is connected by directed dependencies only,
i.e., Di,j = Dj,i = 1. Real world systems usually have a
mixture of directed and undirected links and hence sit in
between these two extremes.

The proposed model captures some basic yet impor-
tant features which have a significant role to play in char-
acterising network interdependency. By configuring in-
terdependent directionality, redundancy and extent, the
model can represent, and simulate the performance of, in-
terdependencies that are more representative of real world

1 F could be generalised into a vector when number of net-
works k > 2. This also applies to parameters K and D as
described below.
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couplings. For example, a one-way interdependent system
can be generated if we set F i,j = 0 and F j,i > 0, a
typical relationship that exists between ICT and other
infrastructure networks. An unbalanced interdependent
system is modelled if we set F i,jKi,j �= F j,iKj,i, a com-
monly observed relationship between a pair of interdepen-
dent networks.

3 Cascading failure model

In order for any network node to function, we assume that
at least one of its supporting nodes from each of the net-
works on which it depends is available. Nodes fail via three
mechanisms (i) through direct disruption; (ii) if it loses all
of its supporting nodes from at least one of the networks
that support it; (iii) finally, in line with percolation theory
approaches [34], a node fails if it is disconnected from the
largest component (the giant component) of the network
to which it belongs.

We recognise that this is a simplified description of
failure and that a number of other factors such as stor-
age capacity, human intervention and component condi-
tion modulate failure processes. For example, if a road
junction loses the control signal from its ICT network, it
does not fail completely. Rather, its capacity for accom-
modating traffic flow is altered. By removing capacity, lag
and latency, our analysis is more tractable and enables us
to focus on generating insights into the implication of in-
terdependency in a worst case scenario where these other
factors are not able to modulate the failure processes.

For simplicity, we consider an interdependent system
composed of two networks A and B, initially with size NA

0

and NB
0 . We assume that network disruption is initiated

by disabling a fraction q of nodes from network A. When
these nodes are removed, all their links fail (including both
intra- and inter-links). The failure of these nodes and links
may result in fragmentation of network A. Only the nodes
belonging to the largest connected component are still
functional, while nodes that are part of the remaining
smaller network fragments become non-functional. The
failure of these network A nodes removes or reduces the
support that network B obtains from network A. A net-
work B node fails if it loses all its supporting nodes from
network A. The failure of network B nodes may cause
fragmentation of network B. Again, only the nodes be-
longing to the largest component of B remain functional.
We call this point the end of stage 1 of a cascading failure
and record the numbers of nodes in the giant components
of networks A and B at this stage as NA

1 and NB
1 .

During cascade stage 2, we remove nodes in A that
have lost all their support from B, and then remove all A
nodes that are disconnected from the largest component
of A. We then apply the same to network B. We use NA

t

and NB
t to specify the sizes of the largest components of

the system at the end of stage t of the cascade of failure.
At the end of the cascade process, both networks stop

(a) Stage 0 (b) SStage 1 (c) Stage 2

Fig. 2. Cascading failure process of an interdependent sys-
tem. The initial system, shown in (a), has a set of nodes in
network A and B, labelled {A1, A2, . . .} and {B1, B2, . . .}, re-
spectively. An intra-link is represented as a solid line, and an
inter-link is represented as a dashed line. At Stage 0, node A4 is
disabled/attacked. When A4 fails, all links connected to A4 fail.
This disconnects A1 from the largest component of network A,
and therefore A1 fails. The failure of A4 and A1 triggers the
failure of B5 (supported by A4) and B2 (supported by A1).
The failure of B5 disconnects B6 from the largest component
of network B, hence B6 fails. This leads to the system con-
figuration shown in (b). The failure of B6 leads to the failure
of A6, before the system eventually stabilises in the configura-
tion shown in (c).

losing nodes, and the system stabilises at stage T when:{
NA

T+1 = NA
T

NB
T+1 = NB

T .
(1)

This is shown visually, for a system of size NA
0 = NB

0 = 6,
in Figure 2 where the system stabilises at t = 2.

We use the following measures to quantify the post-
attack performance of an interdependent system.

(1) The connectedness of a system is measured by the rel-
ative size of the largest component, P , of the final sta-
bilised system after the cascading failure, as follows:⎧⎪⎪⎨

⎪⎪⎩
P = NA

T +NB
T

NA
0 +NB

0

PA = NA
T /NA

0

PB = NB
T /NB

0 .

(2)

The larger P is, the more nodes remain in the largest
connected component, the better the system is con-
sidered to perform.

(2) The failure threshold qc is the minimum size of dis-
ruption that causes a system to collapse to P = 0.
The larger qc is, the more robust the system.

(3) The aggregate performance, IP, characterises the be-
haviour of an interdependent system subjected to
a full range of network disruption event sizes q0,
q1, . . . , qi, . . . , qn where q0 = 0, qn = 1 and qi+1 > qi.
IP is the integral of P (q) which, for the n disruptions
tested, is calculated as:

IP =
i=(n−1)∑

i=0

Pi (qi+1 − qi) . (3)

A larger IP indicates a more robust system.
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Fig. 3. Aggregated system performance IP of a directed in-
terdependent system with KA,B = KB,A = K and FA,B =
FB,A = F .

4 Influence of interdependency

We measure the performance of interdependent systems
over a wide range of extent, redundancy and directionality
as defined in Section 2. This section analyses systems that
consist of two Erdös-Rényi (ER) networks. We will explore
the impact of network size, topology and disruption modes
in Section 5.

Experiments were carried out over systems that couple
two networks of NA

0 = NB
0 = 10 000 nodes, with an aver-

age degree KA
0 = KB

0 = 4. We initiate disruption by re-
moving a randomly selected fraction q of network A nodes.
The choice of system size is based on our observation of
real networks, in particular civil infrastructure systems.
Most of these are characterised by large number of nodes
(a few thousands or more), with a typically small degree
distribution (often 3–4) [2,4,35], and with only a propor-
tion of nodes dependent on another network. We therefore
investigated a much wider variable space to consider not
only how real-world systems perform, but how deviations
from this might enhance or reduce performance.

4.1 Impact of interdependent directionality

The most vulnerable interdependent configuration is when
two networks are inter-connected only with directional
links, i.e. DA,B = DB,A = 1. Figure 3 shows the ag-
gregate performance of a directed interdependent system
when KA,B = KB,A = K and FA,B = FB,A = F are var-
ied, respectively. The worst performance (IP is nearly 0)
occurs when FA,B = FB,A = 1 and KA,B = KB,A = 1. In
this situation, even a small portion of network disruption
can cause catastrophic cascade and lead to the collapse of
a whole system.

This compares to IP ≈ 0.3 when the networks are con-
nected via undirected links only, i.e. DA,B = DB,A = 0,
which is dramatic improvement over a directed system of

Fig. 4. Difference between the aggregate performance
(IPundirected − IP directed) of undirected and directed systems
when KA,B = KB,A = K and FA,B = FB,A = F are varied.

Fig. 5. Failure threshold, qc, as a function of KA,B = KB,A =
K when FA,B = FB,A = 1.0.

otherwise the same configuration. Figure 4 shows the dif-
ference in performance between undirected and directed
systems. For any given K and F a directed system never
has greater IP, hence is more vulnerable than an undi-
rected system. The greatest difference in performance oc-
curs when FA,B = FB,A > 0.5 and KA,B = KB,A < 5.
Our research shows that when K is sufficiently large or F
is very small, the IP of a directed system approaches that
of an undirected system.

The robustness of an undirected system is further man-
ifested by the facts that it has a larger failure threshold qc

than a directed system. As shown in Figure 5, the smaller
KB,A and KA,B (or the larger FA,B and FB,A, see Fig. S5
of the supplementary information�), the bigger the im-
pacts they make, and the larger performance differences
observed between two extremes of systems.

The main reason for the poorer performance of a di-
rected system is that it presents more possibilities for the
existence of longer dependency chains than an undirected
system. A dependency chain exists where a network A
node, u, supports a network B node, v, and v in turn

http://www.epj.org
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Fig. 6. Aggregate performance IP as a function of K (KA,B =
KB,A = K, FA,B = FB,A = 1 and DA,B = DB,A = 0), and IP
as a function of F (FA,B = FB,A = F , KA,B = KB,A = 1 and
DA,B = DB,A = 0).

supports a further network A node w (where w �= u),
and so on. These dependency chains run back and forth
between the two inter-connected networks. A failure of u
compromises the robustness of all downstream nodes in
the dependency chain, potentially triggering their failure
and a possible cascade.

In an undirected system, as inter-network dependency
is mutual, when u supports v, v also supports u. As well
as u, v supports KB,A − 1 other A nodes, i.e., v intro-
duces KB,A − 1 nodes into the dependency chain. How-
ever, in a directed setting, as inter-network dependencies
are not symmetric, v does not necessarily support u, in-
stead introducing KB,A additional A nodes into the de-
pendency chain. Hence in a directed system dependency
chains tend to be longer than in an undirected system,
causing a more effective propagation of failure across net-
works and an increased system vulnerability. The smaller
KB,A, the greater the difference made by switching from
undirected to directed dependencies (Fig. 5), which is con-
sistent with other analysis [36].

4.2 Impact of interdependent extent F
and redundancy K

The vulnerability of an interdependent system can be re-
duced by either increasing KB,A and KA,B or decreasing
FA,B and FB,A, as illustrated in Figure 6. Our exper-
iments reveal that system performance (in terms of P )
increases linearly as FA,B and FB,A decrease. An inter-
dependent system improves its performance at a slow rate
when we increase KB,A = KA,B = K, and a good fit2 to
the simulated results was observed for P = a+b

√
log(K).

Increasing KB,A and KA,B is more effective when KB,A

and KA,B are small and this strategy becomes less re-
sponsive when KB,A and KA,B are large (exceeding 8 in

2 The values of a and b depend on the setting of FA,B and
FB,A, and a = 0.325 and b = 0.152 were identified for the
setting and results presented in Figure 6.

Fig. 7. Relative size of giant component P as a function of q
(the size of the attack on network A), where FA,B = FB,A =
1.0, and KA,B = KB,A = K are varied.

this setting). On the other hand, decreasing FA,B and
FB,A can achieve a more consistent performance gain
throughout the range of FA,B and FB,A. However, it is
important to note that two strategies for reducing vulner-
ability do not represent the same cost. Whilst the per-
formance gain achieved by increasing KA,B = KB,A = 1
to KA,B = KB,A = 2 can be accomplished by decreasing
FA,B = FB,A = 1 to FA,B = FB,A ≈ 0.75, however,
if all nodes in network B are fully dependent on a con-
nection to network A (e.g. all components in one network
may require connection to an electricity grid) then options
for altering F will be limited, or require development of
new decentralised energy systems which must be balanced
against the costs of doubling the number of inter-network
connections associated with doubling K.

Low interdependent redundancy not only leads to re-
duced system performance, but also abrupt system fail-
ure, as shown in Figure 7. Under the setting of FA,B =
FB,A = 1.0, when KA,B and KB,A are small, a large func-
tioning component exists when q < qc, and it suddenly
collapses when q reaches qc. Increasing KA,B and KB,A

can ease off the abruptness of network failure and results
in a relatively continuous phase transition at qc

3. This
is because the larger KA,B and KB,A, the more support
a node receives from another network. In this instance,
both network A and B behave as independent networks.
Our experiment indicates that as there is little cascading
effect, PA will tend to approach the size of a giant compo-
nent for a single network of the same scale4; for network
B, when q < qc, removing nodes from network A does not
impact on the integrity of network B and PB approaches
1.0. Network B collapses only when network A collapses,
i.e., PB approaches zero when q > qc.

The abrupt failure was only observed on systems when
FA,B and FB,A are sufficient large, e.g. greater than 0.5
under the setting of KA,B = KB,A = 2, as shown in

3 Phase transition here means the change of network size
from non-zero to zero.

4 See Section 1 of the supplementary information� for the
performance comparison between interdependent and single,
isolated systems.

http://www.epj.org
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Fig. 8. Relative size of giant component P as a function of q
(the size of the attack on network A), where KA,B = KB,A = 2,
and FA,B = FB,A = F are varied.

Figure 8. This is because the larger FA,B and FB,A, the
more tightly network A and B depend on each other. This
naturally results in increased propagation of failure across
networks, and the reduced system performance. When
FA,B and FB,A are small, the performance of systems
approach that of single networks, exhibiting a relatively
continuous phase transition, but with A and B behaving
differently. PA is zero but PB is non-zero at the end of a
cascade. Total fragmentation of network B happens in a
cascade only when FB,A (the fraction of dependent nodes
in network B) exceeds the failure threshold of a single net-
work of the same properties as network B. When FB,A is
smaller than the failure threshold of such a single net-
work, collapse of network A does not cause the collapse
of network B, and PB approaches the size of the giant
component of a single network when it has FB,A fraction
of nodes removed. This results in the non-zero P as shown
in Figure 8. Examples of such a phenomenon are often ob-
served in a coupled gas and electricity system. When only
a small portion of an electricity network relies on a gas
network for fuel supply, the collapse of the gas network
will only disrupt a portion of the electricity network.

In summary, varying interdependency can modify sys-
tem behaviour and the limits within which it can operate
safely. Systematically testing a range of interdependency
configurations has provided a more complete picture of
the role interactions between networks play in mediating
system performance5. Subsequent sections consider the in-
fluence of other network properties, and potential coun-
termeasures to mitigate vulnerabilities associated with
interdependency.

5 Influence of network sizes, topologies
and disruption modes

The performance of an interdependent system can be in-
fluenced by factors such as network size, topologies and
disruption modes.

5 Readers are referred to the supplementary information� for
additional supporting analysis.

Fig. 9. Impact of network size. P is plotted as a function of q.
Results are obtained on systems with KA

0 = KB
0 = 4, FA,B =

FB,A = 1.0, KA,B = KB,A = 2 and DA,B = DB,A = 1.

Fig. 10. Impact of network node degree. Failure threshold
qc is plotted as a function of KA

0 = Kb
0 = 〈k〉 for systems

under the interdependency setting of FA,B = FB,A = 1.0 and
KA,B = KB,A = 2.

5.1 Network size

We applied our model to interdependent systems compris-
ing different numbers of network nodes, NA

0 and NB
0 , and

average node degree, KA
0 and KB

0 . These results exhibit
similar trends and patterns to those reported in Section 4.
Aggregate system performance IP and failure threshold qc

varies very little for a range of network sizes. However, Fig-
ure 9 indicates that P (size of giant component) collapses
more abruptly for larger networks. Thus, and perhaps
non-intuitively, larger interdependent systems can be more
fragile. This agrees with results reported in reference [12].

Furthermore, the performance of interdependent net-
works is shown to improve when we increase node de-
grees KA

0 and Kb
0. Figure 10 shows that qc increases with

KA
0 = Kb

0 = 〈k〉. This observation is consistent with the
analytical solution obtained for a single network [34] for
ER networks.

http://www.epj.org
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Fig. 11. Impact of network topologies. Frequency of relative
size of giant component P is plotted as a function of q and P
Dependencies are set with DA,B = DB,A = 1, FA,B = FB,A =
0.8 and KA,B = KB,A = 1.

5.2 Network topology

We also studied systems that couple networks of differ-
ent topologies6. These results show similar trends and
patterns in overall performance to those reported for the
ER-ER networks in Section 4 (see Fig. S6 of the supple-
mentary information�). However, the aggregate measure
of performance, IP , obfuscates variability in system be-
haviour. Figure 11 shows the variability of giant compo-
nent size, P , for a given initial network disruption q, and
the frequency that a system stabilises at P , for q.

Variability is greatest in a system that couples two
scale free networks (SF-SF system) and smallest in an
ER-ER system. The parameter region where variability is
greater is for small P (when P < 0.5 in this setting). This
suggests that a SF-SF system is more volatile or unpre-
dictable, when compared with similar systems that con-
tain one or more ER networks. The lower variability of P
for ER-ER systems stems from the more uniform node de-
gree distribution of ER networks, so that the initial failure
is over nodes of similar connectivity. The greater variabil-
ity of node degree distribution of a SF network makes
performance more sensitive to the connectivity of nodes
that are disabled. This results in different forms of net-
work fragmentation and thus a wider range of P .

5.3 Network disruption strategy

Network disruption strategies can influence system per-
formance. We explore two types of deliberate attack: high
degree node biased attack (highBias attack) and low de-
gree node biased attack (lowBias attack) on both SF-SF

6 We focus on ER and SF networks as they are consistent
with the structure of many social and engineered systems, en-
abling us to interpret results in the context of real systems.

(a) SF-SF, highBias  (b) SF-SF, lowBias 

(c) ER-ER, highBias (d) ER-ER, lowBias

 

Fig. 12. Results for systems under lowBias and highBias at-
tacks. Aggregate performance IP is plotted as a function of
KA,B = KB,A = K (vertical axis) and FA,B = FB,A = F (hor-
izontal axis), under dependency setting of DA,B = DB,A = 1.

and ER-ER systems (Fig. 12) (see Fig. S7 of the supple-
mentary information� for the results on ER-SF and SF-
ER systems). For the highBias attack, we set the prob-
ability that a node is disrupted as being proportional to
its degree. In lowBias attack, the probability is inversely
proportional to its degree. The SF-SF are most heavily
impacted by highBias attacks, but perform better when
subjected to lowBias attacks. The degree distribution of
SF networks leads to more highly connected hub nodes
compared to ER networks. Consequently highBias attacks
lead to more fragmentation in a system with SF networks
than in a system with ER networks. On the other hand,
due to the existence of a large portion of low degree nodes
in SF networks, when lowBias attack is employed, nodes of
lower connectivity are preferentially targeted so the SF-SF
systems outperform the other configurations as a result of
a lowBias attack.

6 Reducing vulnerability: outlook
and discussion

Results presented in previous sections indicate that vul-
nerability can be introduced into systems when network
structures and interdependency are sub-optimal. The per-
formance of interdependent systems can be improved if the
extent of dependency decreases or the redundancy of de-
pendency increases, as we discussed earlier. In this section
we present two alternative countermeasures to reduce the
vulnerability of interdependent systems.
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Fig. 13. Reducing vulnerability: ratio of performance change
in term of aggregate performance IP , when the proportion,
DA,B , of directed dependencies decreases in an interdependent
system.

6.1 Optimising interdependent directionality

Results in Section 4 indicate that a directed system is
more vulnerable than an undirected system. In this sec-
tion we study how a directed system might improve its
performance through turning directed dependencies into
undirected dependencies. To do this, we start with a
system that has maximum possible directed links, e.g.
DA,B = DB,A = 1. We gradually decrease DA,B and
DB,A until it reaches the lowest limit or becomes an undi-
rected system7. We record how the system changes its
performance against that of the original system. Figure 13
presents our results for a few different settings of KA,B,
KB,A, FA,B and FB,A.

A dramatic improvement was observed for relatively
vulnerable systems, e.g., systems where KA,B = KB,A =
1 and FA,B = FB,A = 1.0. For such systems, by
turning 30% of the directed links to undirected links,
over 100% performance improvement can be achieved.
The improvement reaches 270% when 50% of the directed
links were turned into undirected links. However, the ef-
fectiveness of this strategy reduces for systems with large
KA,B and KB,A or small FA,B and FB,A. For example,
the 270% improvement achieved in the last case drops
to only about 30% when KA,B = KB,A = 2. Hence we
can conclude that changing directed links into undirected
links is a cost effective way to reduce vulnerability. With-
out introducing additional dependency links (and there-
fore cost), this strategy is extremely effective for systems
that are particularly vulnerable to cascading failure, i.e,
those with a significant extent of dependency, but a low
degree of redundancy in these dependencies.

7 Since undirected dependencies are symmetric,
DA,B and DB,A relate to each other via equation(
1 −DA,B

)FA,BKA,B =
(
1 −DB,A

)FB,AKB,A. This

can restrict what values DA,B and DA,B can take. The effect
of this is shown in Figure 13, where in certain scenarios the
range of DA,B is [0.5,1.0] instead of [0.0,1.0].

Fig. 14. Performance improvement when high degree nodes
are hardened. Aggregate performance, IP, is plotted as func-
tion of α as specified in equation (4). Both SF-SF and ER-
ER systems have dependency setting DA,B = DB,A = 1,
FA,B = FB,A = 1.0 and KA,B = KB,A = 2.

6.2 Hardening high degree nodes

Since the failure of high degree nodes is more likely to
lead to large scale network fragmentation, we investigated
the effect of hardening or protecting high degree nodes as
a means to reducing vulnerability. We explore the strat-
egy that improves the hardness of a high degree node and
make it less likely to fail when facing an attack. In our
experiments, we assign the level of hardening that a node
receives as proportional to its degree such that the fail-
ure probability of a node is inversely proportional to its
degree:

P (k) ∼ 1
kα

(4)

where α � 0. When α = 0, P (k) has the same value for all
k, i.e. the model simulates a scenario that all nodes receive
same level of protection. For α > 0, higher values indicate
increased hardening of high degree nodes. By tuning α,
we can configure the significance of protecting high degree
nodes. Figure 14 plots how the performance of SF-SF and
ER-ER systems improves when we increase α. Aggregate
performance IP is shown to increase with α for all the
networks considered in our research. SF-SF networks ex-
hibit the greatest performance gains because protection
of their high degree hub nodes reduces the probability of
large scale fragmentation. The more investment we put on
protecting high degree nodes, the more performance gain
we obtain. However care must be taken when practising
this method due to the cost involved.

In summary, the vulnerability of an interdependent
network is shown to be reducible either by optimising
inter-network connections, or by hardening high degree
nodes. Our additional research on reducing the vulnera-
bility of interdependent systems is in the supplementary
document�.

7 Conclusions

This paper presents an approach to studying the vulner-
ability of interdependent systems. The proposed network
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model characterises interdependencies along multiple di-
mensions, and provides the capacity to capture many of
the interdependencies encountered in natural, engineered
or social systems. Unlike previous research where the de-
scription of interdependency was more limited, thereby
enabling analytical solutions to be found, we have sought
to understand interdependencies through numerical sim-
ulations. Our research reveals that varying the nature of
cross-network dependency can modify the behaviour of an
interdependent system and hence change the conditions
for its safe operation. The most salient findings are:

– The directionality, extent and redundancy that we use
to characterise inter-network dependency are pertinent
properties that mediate the performance of an inter-
dependent system.

– The disruption to a system can be disproportionate to
attack size when inter-network dependent configura-
tions are sub-optimal.

– Networks with directed dependencies are less robust
than those with undirected dependencies.

– The degree of redundancy in inter-network dependen-
cies can have a differential effect on robustness depend-
ing on their direction.

The above observations are applicable to a range of classi-
cal network topologies, which include structures observed
in many social and engineered systems. However, the per-
formance of interdependent networks is heavily influenced
by attack mechanisms. A large scale system is more likely
to experience abrupt collapse during a cascade than a
small scale system does. Networks with hubs, or broad
degree distributions were more sensitive to degree biased
attacks, and they exhibited much wider variability in their
system response when the surviving components of these
systems are small.

The most vulnerable interdependent configuration is
for networks to have each node connected to another
network by a directed link, but with few redundant
connections. As most real-world systems have a very small
number of redundant inter-connections and such interde-
pendencies are rarely wired mutually or symmetrically be-
tween networks, we expect they often operate near their
critical points and significant cascading failure could be
triggered by a relatively small scale initial disruption.
This is consistent with real examples of failure across
inter-connected infrastructure systems, such as the 2003
Italy power blackout [37] and the 2009 UK Cumbrian
floods [38]. Typically, infrastructure systems are managed
independently of each other so understanding the best
strategies to protect the network for which an operator
is responsible must account for dependencies with other
networks. We have demonstrated several strategies for im-
proving the performance of interdependent systems and
shown that the magnitude of cascading failure can be
significantly decreased when the directionality of inter-
network dependencies is optimised. Hardening high de-
gree nodes is another effective way to improve system
performance.

The model describes important features of network in-
terdependencies that have been observed in real systems.

The results represent an improved understanding of com-
plex interdependencies and risks associated with them. We
recognise that they do not capture all the processes associ-
ated with failure of real systems but provide conservative
insights into the implications of different interdependent
structures on network performance. We are extending this
analysis to consider issues around capacity and flow in net-
work connections and the spatial properties of systems.
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We thank the anonymous reviewers for the careful reading of
our manuscript and the valuable comments, which significantly
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