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Abstract. An infinite bent chain of nanospheres connected by wires is considered. We assume that there are
δ-like potentials at the contact points. A solvable mathematical model based on the theory of self-adjoint
extensions of symmetric operators is constructed. The spectral equation for the model operator is derived
in an explicit form. It is shown that the Hamiltonian has non-empty point spectrum. The positions of the
eigenvalues for different values of the system parameters (the length of the connecting wires, the intensities
of δ-interactions and the bent angle) are found.

1 Introduction

The spectral properties of Hamiltonians for nanosystems
play an important role in the prediction of transport prop-
erties (see, e.g., [1–4]). It is impossible to create a new nan-
odevice without the spectral analysis of the correspond-
ing Hamiltonian, however, direct computations of the
Hamiltonians are rather difficult. Usually, physicists use
simplifying models, such as the widely used and very at-
tractive quantum graph models. In the framework of such
models, the problem is reduced to a quasi-one-dimensional
problem. In spite of its simplicity, the model retains the
features of the corresponding realistic system. In many
cases, the model of a nanodevice consists of a few leads
attached to some compact finite graph, which can be con-
sidered as a local perturbation of the corresponding infi-
nite graph (including the leads). The spectral problem for
a locally perturbed infinite quantum graph was considered
in [5], where the authors presented the specific spectral
behavior of the operator. Chain type structures are inten-
sively investigated last time. The chain elements may be
quantum rings, quantum dots, quantum graphs, etc. For
these systems, the quantum graph model is transformed
to the so-called decorated quantum graph model. If the
chain is periodic, then the spectrum has the band struc-
ture. As for the discrete spectrum, one observes the most
interesting situation when there is a local perturbation of
such graph. In this case the point spectrum can appear,
which is an interesting physical phenomenon. This is why
it is important to be able to identify the condition for its
realisation. Duclos et al. [6] considered the quantum graph
of bent chain of rings. In this work they posed the ques-
tion: “What is a condition for the discrete spectrum to
appear?” It is interesting that the considered bent chain
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has a point spectrum only in the case when there are δ-like
perturbations at the contact points of the neighbor rings.
To construct the eigenfunctions, they used the transfer
matrix approach. This method was applicable given that
the model system was quasi-one-dimensional. More com-
plicated cases of branching chains of rings and branching
strips graphs are considered in [7,8].

Due to the physical significance of the problem of
bound states caused by a local perturbation, it is inter-
esting to investigate other types of bent chain systems. In
this work we study the bent chain of spheres connected by
wires (see Fig. 1). It can be used as a model of one newly
created nanostructure, the so-called nano peapod. It is a
nanotube filled by a chain of fullerene molecules. There is
a number of experimental works describing the properties
of such systems and the processes for their creation [9–14],
and it would therefore be useful to construct an effective
mathematical model for the system. This is the goal of the
present paper.

Let us begin with a description of the mathematical
background of the model. To avoid unnecessary difficul-
ties, we will use dimensionless values. From a physical
point of view, this means that we choose the system of
units in which e = � = c = 2m = 1, where e, m are the
charge and the mass of the particle, correspondingly, c is
the speed of light, � is Planck’s constant. The state space
for the model is

⊕+∞
n=−∞(L2(Sj) ⊕ L2(0, �)). Here Sj is

the jth sphere of the chain. Let HS
n = −ΔLB denote the

Laplace-Beltrami operator on the sphere Sn, Hw
n = − d2

dx2

denotes the Hamiltonian for the wire with number n. The
operator of the system has the following form:

H =
+∞⊕

n=−∞

(
HS

n ⊕Hw
n

)
.
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Fig. 1. Geometry of the system. The inset shows the central
cell.

The domain of this operator is
⊕+∞

n=−∞(W 2
2 (Sn) ⊕

W 2
2 (0, �)). Here W 2

2 is the Sobolev space. In addition,
we assume that there are the δ-potentials at the contacts
points.

To give rigorous mathematical description of our sys-
tem we use the operator extension theory. In particular,
the δ-potential at segment [0, �] is introduced in the follow-
ing way. Let ξ ∈ [0, �]. Consider the restriction of the oper-

ator − d2

dx2
in the set of smooth functions, which are equal

to zero at the point ξ simultaneously with their deriva-
tive. The obtained operator is a symmetric operator. Its
self-adjoint extensions give us a one-parameter family of
operators Hα, where the parameter α characterises the
power of the δ-perturbation in the chosen point ξ. Ac-
tually, the existence of a δ-like potential at the point ξ
means that functions from the domain of Hα satisfy the
following conditions at the point ξ:

{
ψ(ξ + 0) = ψ(ξ − 0),

ψ′(ξ + 0) − ψ′(ξ − 0) = αψ(ξ). (1)

In addition we give a brief description of the “gluing” pro-
cess for a sphere and a wire. Denote by ψs and ψw the wave
functions at the sphere and the wire, respectively. We re-
strict the operator HS ⊕Hw onto the set of elements, for
which ψS , ψw, ψ

′
w vanish at the connection points. Then,

we construct self-adjoint extensions of this symmetric op-
erator. The extensions are parameterised by a few num-
bers related to the contact characteristics. In fact, to re-
alise this procedure, it is necessary to consider functions
with logarithmic singularities at the connecting points to
the sphere and establish the correlation between the co-
efficients. Namely, we consider functions of the following
form:

ψS(x) = −u(ψS)
1
2π

ln ρ(x, q) + v(ψS) +R(x),

where ρ(x, q) means the geodesic distance between point
x and the contact point q on the sphere, R(x) is the re-
mainder term, which tends to zero if x → q, parame-
ters u, v (u, v ∈ C) are coefficients which play the role
of boundary values for ψS at the point q.

It is obvious, that the boundary conditions for the wave
function at the contact points are linear relations between
ψw(q), ψ′

w(q) and u(ψ), v(ψ). Following [15,16], we choose
these relations in the form

{
v(ψS) = Nu(ψS) −Mψ′

w(q),
ψw(q) = M∗u(ψS) − Pψ′

w(q).

The coefficients M,N,P are related to the physical prop-
erties of the connection at points qj . We will assume that
M = 1, and N = P = 0. This is analogous to the well-
known Kirchhoff conditions [17,18].

2 Transfer matrix

To find the point spectrum for the system we use
the transfer matrix (monodromy matrix) approach (see,
e.g., [6,7,19,20]). It is necessary to construct the matrix
for each cell of the chain. The cell consists of a sequence
of elements. The transfer matrix for the whole cell is the
product of the transfer matrices for all elements. Let us
construct the transfer matrix for one cell of our chain step-
by-step.

First, we have δ-potentials at the ends of our segments.
The transfer matrix corresponding to a 1D δ-potential is
known (see Eq. (1)):

(
ψn−1(�+ 0)
ψ′

n−1(�+ 0)

)

=
(

1 0
α 1

) (
ψn−1(�− 0)
ψ′

n−1(�− 0)

)

.

Our goal is to find the eigenvector for the Hamiltonian.
Note, that the eigenfunction corresponding to the eigen-
value E = k2 should have the following form.
For the segment:

ψw,n(x) = Dn,1 sin kx+Dn,2 cos kx.

For the sphere:

ψS,n(ϕ, θ) = CL
nG

(
ϕ, θ;π,

π

2
;E

)
+ CR

n G
(
ϕ, θ; 0,

π

2
;E

)
,

where ϕ, θ are the spherical coordinates, and G is the
Green function for the sphere [21]

G(x, y;E) =
1

4 cos
(
π
√

1
4 + E

)

× P− 1
2+

√
1
4 +E

(− cosρ(x, y)) ,

where Pν(x) is the Legendre function, and ρ(x, y) is the
geodesic distance on the sphere.

As in [15], we have for the left contact point

uL = ψn−1(�− 0) = CL,

vL = αψn−1(�− 0) + ψ′
n−1(�− 0)

= QLLC
L +QLRC

R,
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that is:

CL = ψn−1(�− 0),

CR =
1

QLR
(αψn−1(�− 0) + ψ′

n−1(�− 0)

−QLLψn−1(�− 0)).

Here we use the inputs of the Krein Q-matrix

Q =
(
QLL QLR

QRL QRR

)

, (2)

where

QLL(E) = lim
x→qL

(

G(x, qL;E) +
1
2π

ln ρ(x, qL)
)

,

QRR(E) = lim
x→qR

(

G(x, qR;E) +
1
2π

ln ρ(x, qR)
)

,

QRL(E) = QLR(E) = G(qL, qR;E), (3)

and qL, qR are the corresponding contact points.
For our model we have ρ(ql, qR) = 1 in accordance with

the contacts locations. Therefore Pν(1) ≡ 1. We obtain
the following expression for the non-diagonal elements of
Q-matrix:

QLR = QRL =
1

4 cos (πt(E))
Pt(E)−1/2 (− cos(ρ(ql, qR)))

=
1

4 cos (πt(E))
, (4)

where t(E) =
√
E + 1/4.

For the diagonals elements we have [15,22]:

QLL = QRR

=− 1
2π

[
ψ(1/2 + t(E)) − π

2
tan(πt(E)) − ln 2 + CE

]
,

(5)

where ψ(x) is the logarithmic derivative of the Gamma-
function, and CE is the Euler’s constant.

Similarly, we obtain the analogous result for the right
contact point

ψn(−0) = uR = CR

=
1

QLR
(αψn−1(�− 0)

+ ψ′
n−1(�− 0) −QLLψn−1(�− 0)),

ψ′
n(−0) = −vR = −QRRC

R −QRLC
L

= −QRR

QLR
(αψn−1(�− 0) + ψ′

n−1(�− 0)

−QLLψn−1(�− 0)) −QRLψn−1(�− 0).

Transition through the δ-potential gives us the follow-
ing expressions for the value of the wave function and its
derivative:

ψn(+0) =
1

QLR
(αψn−1(�− 0) + ψ′

n−1(�− 0)

−QLLψn−1(�− 0)),

ψ′
n(+0) =

α

QLR
(αψn−1(�− 0) + ψ′

n−1(�− 0)

−QLLψn−1(�− 0)) − QRR

QLR
(αψn−1(�− 0)

+ ψ′
n−1(�− 0) −QLLψn−1(�− 0))

−QRLψn−1(�− 0).

We express the values at the end point of the segment
using the values at the beginning of the segment by solving
the corresponding Cauchy problem for the equation ψ′′

n +
k2ψ = 0 on the segment [0, �]. The result is as follows:

ψn(�− 0) =
ψ′

n(+0)
k

sin kl+ ψn(+0) coskl,

ψ′
n(�− 0) = ψ′

n(+0) cos kl − kψn(+0) sinkl.

Therefore, we obtain the following relation
(
ψn(�− 0)
ψ′

n(�− 0)

)

=
(
M11 M12

M21 M22

) (
ψn−1(�− 0)
ψ′

n−1(�− 0)

)

, (6)

whereMij , i, j = 1, 2, the inputs of the transfer matrixM ,
are as follows:

M11 =
α−QLL

QLR
cos k�

+
sin k�
k

(
(α−QRR)(α−QLL)

QLR
−QRL

)

,

M12 =
cos k�
QLR

+
α−QRR

QLR

sin k�
k

,

M21 =
(

(α −QRR)(α−QLL)
QLR

−QRL

)

× cos k�− k sink�
QLR

(α−QLL) ,

M22 =
α−QRR

QLR
cos k�− k sin k�

QLR
. (7)

3 Model of bent chain of spheres

Our system consists of three elements: a central cell (see
the inset in Fig. 1) and two semi-infinite chains. The trans-
fer matrix for the semi-infinite chain is the matrix M
which was found in the previous section.

Note, that the point spectrum of the model operator
includes the points E = k2, corresponding to the eigen-
values λ = λ(k) of the transfer matrix M , such that
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|λ| < 1, and the continuous spectrum consists of the points
E = k2, for which the eigenvalues λ satisfy the condition:
|λ| = 1 (see, e.g., [23,24]). As has been shown elsewhere
(see, e.g., [25,26]), a local perturbation of a system does
not change the continuous spectrum. Hence, in our case it
is sufficient to consider the semi-infinite chains to deter-
mine the continuous spectrum.

The spectral equation for the transfer matrix (see (6)
and (7)) has the form:

λ2 − 2yλ+ 1 = 0, y =
1
2

(M11 +M22) . (8)

It is clear that if |y| ≤ 1 then |λ1,2(k)| = 1 and the
corresponding energy values k2 = E give us the band.

Furthermore, we introduce the notation

X =
1
2π

[ψ(1/2 + t(E)) − ln 2 + CE ] .

Then, one has

M11 +M22 = 2(α+X)

×
(

4 cos(kl) cos(πt)) − 1
k

sin(kl) sin(πt)
)

− 4k sin(kl) cos(πt)

+
4
k

sin(kl) cos(πt)
(

(α+X)2) − 1
16

)

− 2 cos(kl) sin(πt).

Thus, we obtain the condition for the continuous spectrum
∣
∣
∣
∣(α+X)

(

4 cos(kl) cos(πt) − 1
k

sin(kl) sin(πt)
)

−2k sin(kl) cos(πt)

+
2
k

sin(kl) cos(πt)
(

(α+X)2 − 1
16

)

− cos(kl) sin(πt)
∣
∣
∣
∣ ≤ 1. (9)

In comparison with the continuous spectrum, the deriva-
tion of the point spectrum is more complicated. The pro-
cedure is as follows. We obtain the eigenvalue λ, |λ| < 1, of
the matrix M and the corresponding eigenvector. Then,
we consider the Cauchy problem for the central cell with
the initial conditions given at the left-hand limit by the
eigenvector. The solution of the Cauchy problem gives us
the Cauchy data at the right-hand limit. These Cauchy
data, in their turn, should belong to the invariant sub-
space corresponding to the eigenvalue λ, |λ| < 1. Thus,
there are two conditions for E = k2 to be an eigenvalue
of the Hamiltonian: |λ(k)| < 1 and proper correlation be-
tween the Cauchy data at the left and the right-hand limit
of the central cell.

Let us take the first step. If in the spectral equation
one has (8) |y| > 1 then |λ1(k)| < 1, |λ2(k)| > 1. The
eigenvalue corresponding to λ1,

λ1 =
{
y −

√
y2 − 1, y > 1,

y +
√
y2 − 1, y < −1,

gives us the Hamiltonian eigenvalue satisfying the first
condition for the point spectrum. The eigenvector corre-
sponding to λ1(k) presents the proper Cauchy data:

(
a1

a2

)

=
(

M12

λ1 −M11

)

. (10)

To obtain the second condition for the point spectrum
we need to solve the Cauchy problem for the central cell.
The procedure is similar to that used for the transfer
matrix construction. The central cell matrix M0 trans-
forming the Cauchy data is obtained as a product of the
seven matrices for each step. The steps, consequently, are:
�-shift – δ-potential – input to sphere – transmission from
qB to qR through the sphere – output from the sphere –
δ-potential – �-shift. The matrices for each step have been
described above (the central cell differs from other cells
only in the positions of the connecting points).

As a result, the corresponding matrix is as follows:

M0 =
(
M0

11 M
0
12

M0
21 M

0
22

)

,

where

M0
11 =

α−QBB

QBR
cos2 k�− α−QRR

QBR
sin2 k�

+
(

(α−QRR)(α −QBB) − k2

QBR
−QRB

)

× 1
k

sin k� cosk�,

M0
12 = − 1

QBR
cos2 k�

−
(

(α−QRR)(α −QBB) − k2

QBR
−QRB

)
sin2 kl

k2

− 2α−QBB −QRR

QBR

1
k

sin k� cosk�,

M0
21 =

(
(α−QRR)(α −QBB)

QRB

)

cos2 k�+
k2

QBR
sin2 k�

− 2α−QBB −QRR

QBR
k sin k� cosk�,

M0
22 = −α−QRR

QBR
cos2 k�+

α−QBB

QBR
sin2 k�

−
(

(α−QRR)(α −QBB) − k2

QBR
−QRB

)

× 1
k

sin k� cosk�.

HereQRR,QBR,QRB,QBB are given by formulae (2)–(5).
Taking into account the fact that the initial data at the

entrance of the central cell are formed by the correspond-
ing eigenvector (10) of the transfer matrix, and that the
output data should belong to the corresponding (the same
as at the entrance) eigenspace of the transfer-matrix, one
obtains the second condition for the point spectrum:

M0
21a

2
1 −M0

12a
2
2 +

(
M0

22 −M0
11

)
a1a2 = 0. (11)
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Fig. 2. The dependence of the continuous spectrum on the intensity α of the δ-interactions for the parameters (dimensionless
units): � = 0.5 (left), � = 1 (right).

Fig. 3. The dependence of the continuous spectrum on the connecting wires length for the parameters (dimensionless units):
α = 0.5 (left), α = 1 (right).

Fig. 4. Gap of the continuous spectrum in a neighborhood of the Green function pole E = 12 for the sphere. Left: � = 1, right:
α = 1 (dimensionless units).

As a result, for the bent sphere chain, we come to the
following conclusion:

Theorem. 1. If |M11 + M22| > 2, then solution k of
equation (11) corresponds to an eigenvalue E = k2 of the
model Hamiltonian.
2. If |M11 + M22| ≤ 2, then E = k2 belongs to the
continuous spectrum of the model Hamiltonian.

4 Results and discussion

The spectrum of the model Hamiltonian was calculated
for different values of the system parameters. Namely, we

varied the length of the connecting wires, the intensity of
the δ-interactions and the bent angle.

As for the continuous spectrum, it is determined by
equation (9). The bands positions depend on the length of
the connecting wires and the intensity of the δ-interactions
(Figs. 2 and 3). They do not depend on the bent angle (it is
natural from the point of view of the general theory: local
perturbation does not effect on the continuous spectrum).

We note that there are gaps in the continuous spec-
trum in the neighbourhoods of the Green function poles
for the sphere (E = n(n+ 1), n ∈ N) (Fig. 4).

The dependence of the eigenvalues on the bent angle
for different values of α and � is shown in Figures 5 and 6.
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Fig. 5. The dependence of the eigenvalue on the bent angle for the parameters (dimensionless units): α = 1, � = 0.5 (left),
α = 1, � = 1 (right). The bands are shown as bold segments at the energy axis.

Fig. 6. The dependence of the eigenvalue on the bent angle for the parameters (dimensionless units): α = 1, � = 1.5 (left),
α = 1.5, � = 1 (right). The bands are shown as bold segments at the energy axis.

The eigenvalues belong to gaps of the continuous spec-
trum. The bands are shown at the energy axis as bold
segments. One can see that the variation of � has a greater
influence on the point spectrum of the bent chain than the
variation of α. If the bent angle tends to zero, then the
eigenvalue tends to the edge of the continuous spectrum.
The discrete spectrum is empty for the straight periodic
chain, i.e. for zero bent angle. This is natural because in
this case the system becomes purely periodic.

Thus, in the present paper we have constructed a solv-
able model based on the theory of self-adjoint extensions of
symmetric operators for an infinite bent chain of coupled
nanospheres. The spectrum of the corresponding model
Hamiltonian is described.
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