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Abstract. The computer simulation of condensed systems is a challenging task. While electronic structure
methods like density-functional theory (DFT) usually provide a good compromise between accuracy and
efficiency, they are computationally very demanding and thus applicable only to systems containing up to a
few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much
larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently
needed, and a lot of effort has been spent on the development of a large variety of potentials enabling
simulations with significantly extended time and length scales. Most commonly, these potentials are based
on physically motivated functional forms and thus perform very well for the applications they have been
designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred
from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of
the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not
based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data
as accurately as possible by using very general and flexible functional forms. In this review we will survey a
number of these methods. While they differ in the choice of the employed mathematical functions, they all
have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable
to conventional empirical potentials. It has been demonstrated that in many cases these potentials now
offer a very interesting new approach to study complex systems with hitherto unreached accuracy.

1 Introduction

For the computer simulation of condensed phase systems,
there are two fundamental approaches to determine the re-
quired energies and forces. The first is the use of electronic
structure techniques. With increasing computer resources,
the applicability of these methods has been extended con-
tinuously in recent years, and many different methods
are now available. In particular density-functional the-
ory (DFT) [1] has become a standard method in ab initio
molecular dynamics (MD) simulations [2,3] of condensed
systems with many successful applications. Still, while ac-
curate, these simulations require large amounts of CPU
time, and in many cases detailed simulations are still un-
affordable. The computational costs of electronic struc-
ture calculations can be notably reduced by introducing
additional approximations. An example is the family of
tight-binding methods [4–7], which allows for the study of
much larger systems. Further coarse graining steps build-
ing on tight-binding can be made resulting, for instance, in
the bond order potentials developed by Hammerschmidt
et al. [8].

The other option is to use atomistic potentials, in
which the electronic degrees of freedom are not taken into
account explicitly. Instead, a direct functional relation be-
tween the atomic configuration and the potential-energy
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is derived, which is typically based on physical consider-
ations and simplifications. The validity of this procedure
can be deduced from quantum mechanics. Employing the
Born-Oppenheimer approximation, the Hamilton opera-
tor of the electronic Schrödinger equation is fully defined
by specifying the atomic positions, the chemical elements,
and the total charge of the system, which is typically neu-
tral. Since the sum of the electrostatic repulsion energy
between the nuclei and of the eigenvalue of the electronic
Hamilton operator yields the potential-energy of a given
atomic configuration, a direct functional relation between
the structure and its energy must exist, which corresponds
to the potential-energy surface (PES). If the PES would
be known analytically, very efficient simulations could be
carried out by avoiding demanding electronic structure
calculations. Unfortunately, the development of atomistic
potentials, or equivalently of PESs, is a very challenging
task, since their multidimensional topology is governed by
the full complexity of the underlying quantum mechani-
cal many-electron problem, which is very difficult to de-
scribe by closed analytic forms in all but the most simple
systems.

PESs for large-scale simulations can be constructed
in many different ways. The typical approach in classi-
cal force field methods [9,10], which are frequently used
in MD simulations of biochemical systems, is to con-
struct the PES as a sum of simple low-dimensional terms
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representing covalent bonds, angles, and dihedral angles,
and to consider non-bonded electrostatic and dispersion
interactions. By using a pre-defined bonding pattern and
atom types based on functional groups, most classical
force fields are unable to describe chemical reactions or sig-
nificant atomic rearrangements. Consequently they cannot
be used to study many problems in materials science in-
volving, e.g., metals and semiconductors, or to address
questions related to the making and breaking of bonds.
Only a few methods employing the ideas of classical force
fields, like the reactive force field ReaxFF [11] or empirical
valence bond (EVB) potentials [12] are able to overcome
these limitations to some extent.

For theoretical studies in the field of materials science
many of the simplifications used in classical force fields
have to be abandoned. Instead, atomistic potentials must
be able to decribe a close to continuous range of atomic
configurations and chemical environments very accurately.
Due to the large diversity of relevant structures, from dif-
ferent crystal structures via all kinds of local and extended
defects to amorphous solids and glasses, the distinction be-
tween bonded and non-bonded atoms is usually not pos-
sible and suitable potentials must employ functions based
on the atomic positions only.

The selection of an appropriate functional form is only
the start of the creation of a PES. Typically, a number of
parameters needs to be optimized in order to obtain an
accurate representation of the atomic interactions. These
parameters are determined by minimizing the errors of
the energy, the forces, and in a few cases the Hessian
for a number of example configurations, for which refer-
ence electronic structure calculations have been carried
out. Alternatively, some potentials are also making use
of available experimental data, and also a combination of
experimental and theoretical data is possible. The identi-
fication of the optimum set of parameter values can be a
laborious task, since the final potential must yield accu-
rate results for a substantial number of different physical
properties, like binding energies, equilibrium geometries,
elastic constants, and vibrational (or phonon) frequencies.

Countless potentials have been published to date for
all imaginable systems and applications. The Tersoff po-
tential is an example of an empirical bond order poten-
tial [13,14], which has been frequently used for the investi-
gation of semiconductors. Brenner presented an extension
of the method to allow for the simulation of hydrocarbons,
the so-called REBO (reactive bond order) potential [15].
Here, the bond order is chosen from a selection of values,
where the appropriate choice is driven by the nature of
the local chemical environment of the bond. This exten-
sion of the work by Tersoff also included the addition of
new interaction terms that were based upon the degree of
conjugation of the bond.

Another method, which is very popular for studying
metals and alloys, is the embedded atom method (EAM)
by Pijper et al. [16] and Daw et al. [17]. EAM in its most
basic form consists of two terms, a repulsive part, and
an attractive part. The repulsive term is a pairwise po-
tential that depends only on the interatomic distance be-

tween two atoms. The second term, the attractive part, is
the embedding potential. It determines the energy change
when bringing a free atom into a position within the mate-
rial, and thus into the electron density of all other atoms.
The energy of an atom at a given place must then be de-
termined using the embedding function, which references
the electron density at that point being determined from
a superposition of atomic densities of the other atoms. An
extension, which also takes angular variations of the elec-
tron density into account, is the modified embedded atom
method (MEAM) [18], which improves the accuracy of the
approach significantly.

Related to explicit electronic structure methods is the
family of tight binding approaches [4,5,7]. Tight bind-
ing assumes that the electrons of the atoms are “tightly
bound” – hence the name – and that the atoms and their
associated electrons are mainly interacting with their close
neighbors. Because of this assumption atomic-like orbitals
form a natural basis set for the interacting atoms, and a
linear combination of these orbitals is used to construct
the many-body Hamiltonian. Rather than computing the
integrals describing the interaction between these orbitals,
the Hamiltonian is instead constructed from parametrized
functions, where each function is determined for each atom
pair combination, and found by fitting to quantum me-
chanical calculations. These functions often depend only
on the parameters and the distance between atoms and
the direction cosines which describe the relative orienta-
tion and alignment of these orbitals [19–21]. Solving the
generalized eigenvalue equation for these matrices then
returns the eigenvalues and eigenvectors providing fur-
ther electronic properties of the system, such as the band
structure or the crystal field splitting of d-orbitals. The
Slater Koster integrals of tight binding [19] do have a
parallel for molecular systems – Extended Huckel The-
ory [22]. Further molecular extensions are the Angular
Overlap Model, and Ligand Field Molecular Mechanics,
enabling the description of d-orbitals within classical force
fields [23,24].

Countless other potentials have been published in re-
cent decades for performing computer simulations of ma-
terials, and a comprehensive overview is beyond the scope
of this review. All these approaches have in common that
they are typically based on some physical approximations
to reduce the complexity of the potentials to a tractable
level. In most cases the resulting atomistic potentials are
thus very efficient and they perform reasonably well for the
intended applications, but it is very challenging to obtain
high-quality energies and forces close to first-principles
data. The limited numerical accuracy has its origin in the
functional forms, which are often less flexible and enforce
certain properties of the potential. They usually contain
only a few fitting parameters and consequently they are
too inflexible to capture all the fine details of complex
energy landscapes.

In this review we will survey a variety of methods for
constructing PESs, which aim to overcome the limitations
of conventional potentials by choosing very generic func-
tional forms that are not based on physical considerations
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or approximations. Instead, the goal of these “mathemati-
cal potentials” is to reproduce a given set of reference data
from electronic structure calculations as accurately as pos-
sible. Due to the purely mathematical nature of these po-
tentials they are able to describe all types of bonding, from
dispersion interactions via covalent bonds to metallic sys-
tems, with similar accuracy employing the same functional
form. Many of these methods, which have emerged only in
recent years in the literature in the context of PESs, are
often also summarized under the keyword “machine learn-
ing” potentials. They can be constructed using a variety
of different functional units like Gaussians, Taylor series
expansions, sigmoid-like functions and many others, and
often a superposition or some other form of combination
of a large number of these functions is used to express
complicated multidimensional PESs. Atomistic potentials
of this type are still not widely distributed, but their de-
velopment has seen enormous progress in recent years and
they have now reached a level of maturity making them
interesting candidates for solving problems in chemistry
and condensed matter physics.

When constructing accurate atomistic potentials, a
number of substantial challenges have to be met.

1. Accuracy – The energy and forces provided by the po-
tential should be as close as possible to the data of
reference electronic structure calculations. A manda-
tory condition to reach this goal is that the potential
is sufficiently high-dimensional. Only then it will be
able to capture the effects of polarization and charge
transfer, and the consideration of many-body effects
is also most important for describing metals. Further,
the potential should be transferable, since a potential
is only useful if it is applicable to structures, which
have not been used for its construction.

2. Efficiency – Once constructed, the potential should be
as fast as possible to evaluate to enable the exten-
sion of the time and length scales of atomistic simula-
tions clearly beyond the realm of electronic structure
methods.

3. Generality – The potential should have a universal and
unbiased functional form, i.e., it should describe all
types of atomic interactions with the same accuracy.
Further, the functional form should enable the calcula-
tion of analytic derivatives to determine forces needed
in molecular dynamics simulations.

4. Reactivity – The potential should not require the speci-
fication of fixed bonding patterns or a further discrim-
ination of different atom types for a given element.
Instead it should be able to describe the making and
breaking of bonds and arbitrary structural changes,
which is equivalent to depending solely on the positions
and nuclear charges of the atoms.

5. Automation – The parametrization of the potential for
a specific system should require a minimum of human
effort.

6. Costs – The amount of demanding electronic structure
data required to construct the potential should be as
small as possible.

Apart from criterion three, all these points are equally
important for “physical” and “mathematical” potentials,
and meeting all these requirements to full satisfaction is
very difficult to achieve for any type of potential currently
available.

Some further aspects of the construction of potentials
need to be discussed here, which are specific for purely
mathematical potentials, while they usually do not rep-
resent serious problems for conventional potentials. They
concern some invariances of the PES, that need to be in-
corporated in a proper way. First, the potential-energy of
a system must be invariant with respect to rotation and
translation of the system, since only the relative atomic
positions are important for the energy and forces. Further,
the energy of a system must not change upon interchange
of the positions of any two atoms of the same chemical
element. Including this permutation invariance is straight-
forward, e.g., in classical force fields, which express the en-
ergy as a sum of many individual low-dimensional terms,
or in electronic structure methods, which incorporate this
invariance by the diagonalization of the Hamiltonian. In
case of high-order many-body atomistic potentials, which
are required to reach an accuracy comparable to that of
first-principles methods, including this permutation in-
variance is one of the main conceptual challenges. In the
following sections, some methods, which have evolved in
recent years as general-purpose potentials for a wide range
of systems, are highlighted, and their properties with
respect to the criteria mentioned above will be discussed.

The ultimate goal of such atomisitic potentials is the
simulation of large periodic and non-periodic systems,
ranging from large molecules, bulk liquids, and solids to
extended interfaces, for which electronic structure meth-
ods are computationally too demanding to use, or are not
even tractable.

2 General-purpose atomistic potentials

2.1 Polynomial fitting

In 2003 Brown et al. introduced a method employing poly-
nomials as basis functions to construct PESs of molec-
ular systems [25]. The structural description of the sys-
tem starts with a full set of interatomic distances, like
{R12, R13, R14, R23, R24, R34} for the example of a tetra-
atomic molecule A4. The Rij are then transformed to a
set of Morse variables defined as:

Yij = exp (−Rij/γ) , (1)

with γ being a constant between 1.5 and 3 Bohr. Since
distances as well as Morse variables represent internal co-
ordinates, whose values do not change with rotation and
translation of the molecule, this description ensures trans-
lational and rotational invariance of the potential. A full
distance matrix is, however, not invariant with respect to
a permutation of like atoms. Therefore, a straightforward
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construction of the PES as a linear combination of poly-
nomials [26],

E (Y12, Y13, Y14, Y23, Y24, Y34)

=
nmax∑

a+b+c+d+e+f =0

Ca,b,c,d,e,f

[
Y a

12, Y
b
13, Y

c
14, Y

d
23, Y

e
24, Y

f
34

]
,

(2)

with coefficients Ca,b,c,d,e,f , does not exhibit this invari-
ance. Here, a, b, c, d, e, and f are non-negative integers
with a sum between zero and the maximum order nmax

of the polynomials to be considered. Typically, the largest
exponents used are five or six.

In order to obtain a permutationally invariant ba-
sis set, the monomials are symmetrized employing a
symmetry operator S,

E (Y12, Y13, Y14, Y23, Y24, Y34)

=
nmax∑

a+b+c+d+e+f=0

Da,b,c,d,e,fS
[
Y a

12, Y
b
13, Y

c
14, Y

d
23, Y

e
24, Y

f
34

]
,

(3)

which yields the same basis functions irrespective of
the order of chemically equivalent atoms. All coefficients
Da,b,c,d,e,f of the symmetrized permutationally invariant
polynomials are fitted simultaneously using least-squares
fitting procedures to a database of high-level ab initio cal-
culations, which contains typically several tens of thou-
sands of data points. The specific form of the symmetrized
terms, whose number can be substantial, depends on the
chemical composition of the molecule, and to date the
method has been applied to systems containing up to
10 atoms. More details about the symmetrization proce-
dure, for which efficient methods are available [26], and
the resulting terms can be found elsewhere [27].

Although the complexity of the method currently re-
quires a truncation of the order of the polynomials at com-
parably low order and restricts the formal dimensionality
to that of small molecules, the resulting potentials can still
be applied to large systems like bulk water using two- and
three-body terms only [28]. This is possible since in molec-
ular systems high-order many-body interactions are usu-
ally not essential. Further examples for successful applica-
tions of the method are various charged and neutral water
clusters [26,29,30], the vinyl radical [31] and many others.
Thus, while the construction of PESs using polynomials
is a powerful technique for the investigation of dynam-
ics, reactions, dissociation, and conformational changes for
small molecules or systems composed of these, there has
been no work towards implementing the technique with
respect to the creation of accurate potentials that can be
used to model systems like metals and semiconductors.

2.2 Gaussian processes regression

Gaussian process regression (GPR) [32], also known as
Kriging, is a method that models observables as a real-
ization of a underlying statistical probabilistic model –

the probability density function. The basic concept is that
training examples with correlated observables, i.e., ener-
gies, have also a close correlation in their variables, i.e.,
the coordinates describing the atomic configuration. The
assumption then is that the function, which models the
non-linear relationship between the variables and the ob-
servables, the PES, is smoothly varying. The underlying
statistical model, the probability density function deter-
mines the probabilities that for a given set of inputs a
particular output is observed.

Since the output is known for a number of configura-
tions from reference electronic structure calculations, the
reverse question can be addressed: Can the probability
density function be found that best models the PES for a
given number of structures and their associated energies
and takes into account the reliability of predictions in the
regions near to the known reference points?

All reference data for the GPR model come from a
deterministic function which operates on a set of input
coordinates, where reference point i has coordinates xi =
(xi

1, . . . , x
i
Ndim

), and Ndim is the number of dimensions or
degrees of freedom of the system.

E(xi) = z(xi) +
∑

h

βhfh(xi). (4)

The fh are some linear or non-linear functions of x, and
β are coefficients, where h runs over all functions that
define the PES. It then follows that, because the reference
data comes from a deterministic source, the “errors” are
not random but repeatable for each configuration. These
errors can then be described as a further energy function
whose values are smoothly varying and correlated. The
error within the reference data, z(xi), can be modelled by
Gaussian functions and sampled points that are similar in
the input space have similar errors. Thus the energy for a
data point is the sum of two varying functions – the error
noise and the deterministic source function. Consequently,
the energy prediction can be reformulated as:

E(xi) = z(xi) + μ. (5)

The error is the deviation z(xi) of the function value from
the global average μ, which is provided by the determin-
istic source and also includes the error due to noise in
the sampled data. This is now expressed by the GPR.
The required correlation is constructed from Gaussian,
one for each of the known reference structures. The en-
ergy prediction then relies on these Gaussian functions,
where the contribution by each function depends upon
the correlation between the reference configurations and
the trial configuration. Given that two similar input vec-
tors xi and xj have comparable errors, this similarity can
be represented by a correlation matrix C with elements

Cij = Corr
(
z
(
xi
)
, z
(
xj
))

= exp

(
−

Ndim∑

h=1

θh|xi
h − xj

h|ph

)
,

(6)

θh and ph are two parameters of the model with θh ≥ 0
and 1≤ ph ≤2. Fitting the model then relies on a) the de-
termination of the variance σ2 of the Gaussians, and b)
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xi

E(xi)

Fig. 1. A one-dimensional interpolation by a Gaussian Process
Regression (GPR). The grey region represents the uncertainty
of the model for a given input x, which is small near or at
known reference points (black dots). The solid curve is the
GPR interpolation of the PES. The likelihood is then low in
those grey regions with large widths, and so sampling of new
training points is directed towards these configurations.

the fitting of the parameter vectors of θ and p. Then, σ2,
θ and p are found by the maximization of the likelihood
function L, with these parameters modulating how corre-
lated the Gaussian process values are over the coordinate
space. The likelihood function describes the probability
that the parameters, σ2, θ and p, determine the PES,
and with the vector ε containing all Nref reference energies
ε = [E(xi), i = 1, 2, . . . , Nref ]T , we have:

L
(
θ,p, σ2

)
=

1

(2π)Nref/2 (σ2)Nref/2 |C|1/2

× exp
[
− (ε − Iμ)T C−1(ε − Iμ)

2σ2

]
. (7)

I is a column vector of 1’s, and σ2 can be expressed with
respect to θ and p. Thus the likelihood function is maxi-
mized with respect to θ and p, and typically it is the log of
the likelihood function that is maximized, given ∂logL

∂(σ2) = 0.
In most applications the elements of p are set to 2, further
simplifying the fitting of the likelihood parameters.

New reference structures are added to the data set by
determining the likelihood function for unseen examples.
Those with the worst likelihood are then used as new ref-
erence points. The GPR is iteratively improved by adding
more examples to the reference set, with the aim to im-
prove the likelihood function for all reference and unseen
structures. Ideally a model should yield high likelihood
function values for inputs within the data set, but which
has been constructed using the least amount of Gaussians
in order to ensure simplicity and optimum generalization
properties when applied to new configurations. This is par-
ticularly useful if the amount of data is limited, such as in
the case of using high-level electronic structure methods
to generate the reference data (Fig. 1).

GPRs have already been shown to be applicable
to similar types of problems as neural networks, and
specifically, in the work of the Popelier group GPRs
have been compared to neural networks for modelling
environment-dependent atom-centered electrostatic mul-
tipole moments [33]. It has been found that in this ap-
plication GPRs can be even superior to neural networks,
with almost a 50% decrease in the electrostatic inter-
action energy error for the pentamer water cluster [33].

In the following years, the use of GPRs in the Popelier
group has been expanded, and been used for the predic-
tion of the electrostatic multipole moments for ethanol [34]
and alanine [35], as well as the simulation of hydrated
sodium ions [36], and the prediction hydrogen bonded
complexes [37].

Bartók et al. have used GPRs to construct PESs of
a variety of condensed systems [38]. In this very accu-
rate approach, the total energy is expressed as a sum of
environment-dependent atomic energies and provided as
a superposition of Gaussians centered at known reference
points. A central aspect of the method is the use of four-
dimensional spherical harmonics to provide a structural
characterization, which is invariant with respect to rota-
tion and translation of the system [38–40]. Their applica-
tion of GPRs has been either to model the entire PES, like
for carbon, silicon, germanium, iron, and GaN [38], or to
provide a correction to a DFT PES [40]. In the latter ap-
plication very accurate energies for water can be obtained
by first calculating the energy at the DFT-BLYP level of
theory [41,42]. The GPR model is then fitted in order to
correct the one and two-body interactions, using more ac-
curate data, e.g. from coupled cluster calculations. Thus
a more computationally affordable method can produce
high accuracy results without having the need to explic-
itly compute the energies from an unaffordable high level
of theory.

Gaussian functions have also been employed by Rupp
et al. [43,44] to fit the atomization energies of organic
molecules. For the structural description of a wide range
of molecules a Coulomb matrix has been used. While this
method does not yet represent a PES suitable for atomistic
simulations, as only the global minimum structure of each
molecule can be described and as no forces are available,
this very promising technique has certainly the capabilities
to become a serious alternative approach in the years to
come. A first step in this direction has been taken very
recently in a first study of conformational energies of the
natural product Archazolid A [45].

2.3 Modified Shepard interpolation

In 1994 Ischtwan and Collins developed a technique to
construct the PESs of small molecules based on the mod-
ified Shepard interpolation (MSI) method [46]. The basic
idea is to express the energy of an atomic configuration x
as a sum of weighted second order Taylor expansions cen-
tered at a set of reference points known from electronic
structure calculations. Typically, a set of 3Natom − 6 in-
verse interatomic distances is used to describe the atomic
configuration x.

Then, for each reference point i, the energy of a con-
figuration x in its close environment is approximated by
a second order Taylor series Ei(x) as:

Ei (x) = E
(
xi
)

+
(
x − xi

)T
Gi

+
1
2
(
x − xi

)T
Hi

(
x − xi

)
+ . . . , (8)
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where Gi is the gradient and Hi is the matrix of second
derivatives, i.e., the Hessian, at the position xi of the ref-
erence point.

Typically, many reference points are available, and the
energy prediction for an unknown configuration can be
improved significantly by employing a weighted sum of
the Taylor expansions centered at all reference points,

E (x) =
Nref∑

i=1

wi (x) · Ei (x) . (9)

The normalized weight wi of each individual Taylor
expansion is given by:

wi(x) =
vi (x)

∑Nref
k=1 vk (x)

(10)

and can be determined from the unnormalized weight
function

vi (x) =
1

|x − xi|p , (11)

which approaches zero for very distant reference points
and infinity for x = xi corresponding to a normalized
weight wi(x) = 1. The power parameter p needs to be
equal or larger than the order of the Taylor expansion.
The obtained PES has a number of favorable features. It
depends only on interatomic distances, and therefore it
is translationally and rotationally invariant. Further, the
PES is also invariant with respect to a permutation of
chemically equivalent atoms.

The accuracy of the method crucially depends on the
choice of the reference points, as the approximation of a
second order Taylor expansion of the energy is only suffi-
ciently accurate, if there is a dense set of reference struc-
tures. It has been suggested by Ischtwan and Collins [47]
to start with a reasonable first set of structures, which can
be chosen along a reaction path, and to improve the qual-
ity of the PES by adding more structures in chemically
relevant parts of the configuration space. These points
are identified by running classical molecular dynamics
trajectories employing preliminary potentials, which are
then iteratively refined by adding more and more points
from electronic structure calculations carried out at the
configurations visited in these trajectories.

The modified Shepard interpolation scheme has been
applied successfully to study chemical reaction dynamics
for a number of systems, like NH + H2 → NH2 + H [47],
OH + H2 → H2O + H [48,49], and many others [50–53]. It
has also been adapted to describe molecule-surface inter-
actions using the dissociation of H2 at the Pt(111) surface
as an example by Crespos et al. [54,55]. To keep the di-
mensionality and thus the complexity of the system at a
reasonable level, the positions of the surface atoms have
been frozen resulting in a six-dimensional PES. As the hy-
drogen atoms can move along the surface, an extension of
equation (12) has been required to include the symmetry
of the surface. The modified energy expression is:

E (x) =
Nref∑

i=1

Nsym∑

j=1

wij (x) · Ei (x) . (12)

The purpose of the second summation over all symmetry
elements Nsym ensures that the full symmetry of the sur-
face is taken into account exactly without the requirement
to add structures, which are equivalent by symmetry, into
the reference set.

The modified Shepard interpolation is very appealing
because of its simplicity and the accuracy of the obtained
PESs, but it has also a number of drawbacks. First, to date
its applicability is limited to very low-dimensional systems
and, once the PES has been constructed, the system size
cannot be changed, because if an atom would be added,
the distance to the reference points in the Taylor expan-
sions would not be defined. Moreover, for the prediction of
the energy of a new configuration the reference set needs to
be known and a summation of all Taylor expansions is re-
quired, which makes the method more demanding for large
reference sets. Further, the construction of the potential
requires energies, gradients and Hessians from electronic
structure calculations, which makes the determination of
the reference data rather costly.

Given the similarities between Shepard interpolation
and polynomial fitting in terms of applicability it is worth
comparing these methods in terms of how much data is
required to achieve a fit for the CH+

5 system. Huang et al.
made use of 20 728 training energies to fit a polynomial
surface [30]. However, Wu et al. have been able to achieve
a similar fit using just 50 training examples employing
MSI [50,51]. However, these 50 training examples are not
just energies, but include forces and Hessians. In order to
determine these Hessians, numerous energy calculations
must be performed, resulting in 19 440 energy calculations
– a comparable number to that of Huang et al.

2.4 Interpolating moving least squares

The standard implementation of interpolating moving
least squares (IMLS) [56,57], which is a method derived
from the modified Shepard interpolation, determines a
configuration’s energy using a number of linearly inde-
pendent basis functions, which can be represented by a
matrix. The energy is then given as the sum of M basis
functions bi of the atomic coordinates x, where each basis
function is weighted by a coefficient ai,

E(x) =
M∑

i=1

ai(x)bi(x). (13)

The basis functions have either the form of a Taylor
series [57] or a many-body expansion similar to those
used in high-dimensional model representation neu-
ral networks [58]. The coefficients are determined by
minimization of the objective function

D[E(x)] =
Nref∑

i=1

wi(x)

⎡

⎣
M∑

j=1

aj(x)bj(x) − E(xi)

⎤

⎦
2

, (14)

which is the weighted sum of squared potential energy er-
rors, with wi(x) being the weight defined by the prox-
imity of the trial structure to a reference structure i.

http://www.epj.org


Eur. Phys. J. B (2014) 87: 152 Page 7 of 16

Hence, the largest weight would be found if the trial con-
figuration coincides with a configuration in the reference
set. The method is easily expanded to include further fit-
ting data, such as forces and the Hessians of the train-
ing points [58,59], which expands the design matrix – the
matrix containing the simultaneous equations that must
be solved in order to find the best combination of basis
functions. The coefficients aj are detemined by solving:

BTWBa = BTWV. (15)

Here V is the vector of reference energies, and a is
the transpose of the vector containing the coefficients.
W is a Nref×Nref diagonal matrix containing the weights,
where Wij = wi(x)δij . B is the Nref × M design matrix.

Initial applications of the IMLS method focused on
fitting available PESs for HN2 [60], HOOH [58,61], and
HCN [58], before moving on to PESs computed using ac-
curate ab initio methods, such as for HOOH, CH4, and
HCN [59], CH2 and HCN [62], as well as the O+ HCl
system [63]. More recently Dawes et al. have applied
IMLS fitted PES to van der Waals systems, including the
CO [64], NNO [65] and OCS [66] dimers, described as
four-dimensional PESs where data points have been ob-
tained from CCSD(T) calculations. This method of data
generation is suitable for IMLS as accurate fits can be
constructed from relatively small amounts of data. This
level of accuracy is often required, e.g. for the prediction
of rovibrational spectra.

The basis functions used by Dawes et al. take the form
of numerous many-body terms, that together form a high-
dimensional model representation [67]. High order terms
are not included as basis functions as they would be poorly
determined in scenarios where the PES has been sparsely
sampled.

In order to perform the fitting of the HOOH PES,
Dawes et al. used and iteratively sampled training
set which eventually included almost 2000 reference
points [58]. However, compared to Shepard interpolation
models and neural networks, IMLS models are costly to
evaluate. Dawes et al. showed that IMLS can be used as a
procedure to create an accurate PES from a sparse set of
reference data points. This IMLS PES is then employed
to generate training points that are in turn used to train
a Shepard interpolation model and a neural network.

Using two IMLS models, where one uses basis func-
tions that are an order of degree higher than those used
in the other model, can guide the sampling of the PES.
Regions with a large error between the two models, which
will occur between the current training points, will be the
ideal locations to sample and in turn improve the model.
In this way the manner in which the PES is sampled is
similar to GRPs, where the sampling is sparse while non-
stochastic in nature [59]. The final model used by Dawes
et al. in this example is a modification of IMLS, a local-
IMLS [68], which is similar to the Shepard interpolation
scheme. Local-IMLS computes energies for a configura-
tion by using the reference structures that are similar
rather than using all reference configurations. However,
local-IMLS is more general since the basis functions can

Fig. 2. A small two-dimensional feed-forward Neural Network
(NN) containing a single hidden layer. The input nodes G1 and
G2 provide the structural information to the NN, which then
yields the energy E. Apart from the architecture of the NN,
i.e., the number of layer and the number of nodes per layer,
the NN output is determined by the numerical values of the
weight parameters, which are shown as arrows indicating the
flow of information through the NN. The functional form of
this NN is given in equation (17).

take any form, rather than just the Taylor series expan-
sions used in Shepard interpolation. For the HOOH PES a
similar accuracy compared to previous work was achieved
using 30% less reference points.

2.5 Neural network potentials

Artificial neural networks (NNs) [69,70] have first been in-
troduced already in 1943 to develop mathematical models
of the signal processing in the brain [71], and after contin-
uous methodical extensions in the following decades they
have now become an established research topic in math-
ematics and computer science with many applications in
various fields. Also in chemistry and physics they have
found wide use, e.g., for the analysis of spectra and pat-
tern recognition in experimental data [72]. The use of NNs
to construct PESs employing reference data from elec-
tronic structure calculations has been suggested by Blank
et al. [73] almost twenty years ago, and in the meantime
neural network potentials (NNPs) have been reported for
a number of molecules [74–76] and molecules interacting
with surfaces [77–79]. A comprehensive overview about
the systems that have been addressed by NNPs can be
found in several recent reviews [80–82].

The basic component of almost any NNP is a feed-
forward NN, and a small example corresponding to a
two-dimensional PES is shown in Figure 2. It consists
of artificial neurons, or nodes, which are arranged in
layers. The neurons in the input layer represent the
coordinates Gi defining the atomic configuration, the neu-
ron in the output layer yields the energy of this configu-
ration. In between the input and the output layer there
are one or more so-called hidden layers, each of which
contains a number of additional neurons. The purpose of
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the hidden layers, which do not have a physical meaning,
is to define the functional form of the NN assigning the
energy to the structure. The more hidden layers and the
more nodes per hidden layer, the higher is the flexibility
of the NN. Haykin has stated that in the case of a NN
architecture consisting of two hidden layers, that the first
hidden layers capture the local features of the function be-
ing modelled, while the second hidden layer capture the
global features of the function [83]. All nodes in all lay-
ers are connected to the nodes in the adjacent layers by
so-called weight parameters, which are the fitting param-
eters of the NN. In Figure 2 they are shown as arrows
indicating the flow of information through the NN. The
value yj

i of a node i in layer j is then calculated as a lin-
ear combination of the values of the nodes in the previous
layer using the weight parameters as coefficients. The lin-
ear combination is then shifted by a bias weight bj

i acting
as an adjustable offset. Finally, a non-linear function, the
activation function of the NN, is applied, which provides
the capability of the NN to fit any real-valued function
to arbitrary accuracy. This fundamental property of NNs
has been proven by several groups independently [84,85]
and is the theoretical basis for the applicability of NNs
to construct atomistic potentials. Accordingly, yj

i is then
obtained as:

yj
i = f

⎛

⎝bj
i +

Nj−1∑

k=1

aj−1,j
k,i

⎞

⎠ , (16)

where aj−1,j
k,i is the weight parameter connecting node k

in layer j−1 containing Nj−1 neurons to node i in layer j.
In the special case of the input layer with superscript 0,
the input coordinates are represented by a vector G =
{Gi} =

{
y0

i

}
. The complete total energy expression of the

example NN shown in Figure 2 is then given by:

E = f

⎛

⎝b2
1 +

3∑

j=1

a12
j1 · f

(
b1
j +

2∑

i=1

a01
ij · Gi

)⎞

⎠ . (17)

The weight parameters of the NN are typically determined
by minimizing the error of a training set of electronic
structure data employing gradient-based optimization al-
gorithms, and in particular the backpropagation algo-
rithm [86] and the global extended Kalman filter [87] have
been frequently used in the context of NNPs. The target
quantity is usually the energy, but also forces have been
used in some cases [88,89].

NNPs constructing the potential-energy using just a
single feed-forward NN have been developed for a number
of systems with great success, but for a long time NNPs
have been restricted to low-dimensional PESs involving
only a few degrees of freedom. This limitation has a num-
ber of reasons. First of all, each additional atom in the
system introduces three more degrees of freedom, which
need to be provided to the NN in the input layer. Increas-
ing the number of nodes in the NN reduces the efficiency of
the NN evaluation, but it also complicates the determina-
tion of the growing number of weight parameters. Further,

conventional NNPs can only be applied to systems with
a fixed chemical composition, because the number of in-
put nodes of the NN cannot be changed once the weight
parameters have been determined. If an atom would be
added, the weight parameters for the additional input in-
formation would not be available, while upon removing an
atom the values of the corresponding input nodes would
be ill-defined.

The most severe challenge of constructing NNPs is the
choice of a suitable set of input coordinates. Cartesian co-
ordinates cannot be used, because their numerical values
have no direct physical meaning and only relative atomic
positions are important for the potential-energy. If, for in-
stance, a molecule would be translated or rotated in space,
its Cartesian coordinates would change while its internal
structure and thus its energy are still the same. An NNP
based on Cartesian coordinates, however, would predict a
different energy since its input vector has changed. Incor-
porating this rotational and translational invariance by a
coordinate transformation onto a suitable set of functions
exhibiting these properties is a significant challenge. A
very simple solution appropriate for small molecules would
be to use internal coordinates like interatomic distances,
angles, and dihedral angles, and indeed this has been done
successfully for a number of molecules, but this approach
is unfeasible for large systems due to the rapidly increas-
ing number of coordinates. Further, a full set of internal
coordinates contains a lot of redundant information, and
also using a full-distance matrix is possible only for small
systems.

Another problem that is still present even if internal
coordinates are used concerns the invariance of the total
energy with respect to the interchange of atoms of the
same element. If, for instance, the order of both hydro-
gen atoms in a free water molecule is switched then this
change is also present in the NN input vector. Since all
NN input nodes are connected to the NN by numerically
different weight parameters, this exchange will modify the
total energy of the system, although the atomic configura-
tion is still the same. Including this permutation symme-
try of like atoms into NNPs has been a challenge since the
advent of NNPs. A solution for molecular systems based
on a symmetrization of internal coordinates has been sug-
gested in a seminal paper by Gassner et al. [76] for molecu-
lar systems, and a similar scheme has also been developed
for the dissociation of molecules at surfaces [78]. Unfor-
tunately, both methods are only applicable to very low-
dimensional systems. It should be noted, however, that
also low-dimensional NNPs have been applied to study
large systems by representing only specific interactions
by NNs. Examples are the work of Cho et al. [90], who
used NNs to include polarization in the TIP4P water
model [91], and the description of three-body interactions
in the solvation of Al3+ ions by Gassner et al. [76].

It has soon been recognized that further methodical ex-
tensions are required to construct high-dimensional NNPs
capturing all relevant many-body effects in large systems.
A first step in this direction has been made by Manzhos
and Carrington [92,93] by decomposing the PESs into
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interactions of increasing order in the spirit of a many-
body expansion

E =
Natom∑

i=1

Ei +
∑

i

∑

j>i

Eij +
∑

i

∑

j>i

∑

k>j

Eijk + . . . , (18)

with the Ei, Eij , Eijk being one-, two-, three-body terms
and so forth.

Specifically, they have used the high-dimensional
model representation of Li et al. [67] to reduce the com-
plexity of the multidimensional PES by employing a sum
of mode terms, each of which is represented by an in-
dividual NN and depends only on a small subset of the
coordinates. Since the number of terms, and consequently
also the number of NNs that need to be evaluated, grows
rapidly with system size and with the maximum order that
is considered, to date the method has only been applied
to comparably small molecular systems. In the following
years the efficiency could be improved by reducing the
effective dimensionality employing optimized redundant
coordinates [94,95]. This approach is still the most sys-
tematic way to construct NNPs and very accurate PESs
can be obtained. A similar method based upon many-body
expansions has also been suggested by Malshe et al. [96].

First attempts to develop high-dimensional NNPs have
been made by Smith and coworkers already in 1999 by
introducing NNs of variable size and by decomposing con-
densed systems into a number of atomic chains [97,98]. In
this early work the NN parameters have not been deter-
mined using electronic structure reference data, and only
in 2007 the method has been further developed to a gen-
uine NNP approach [99,100] using silicon as example sys-
tem. Surprisingly, no further applications or extensions of
this method have been reported to date.

A high-dimensional NNP method, which has been ap-
plied to a manifold of systems, has been developed by
Behler and Parrinello in 2007 [101]. In this approach,
the energy of the system is constructed as a sum of
environment-dependent atomic energy contributions Ei,

E =
∑

i

Ei. (19)

Each atomic energy contribution is obtained from an in-
dividual atomic NN. The input for these NNs is formed
by a vector of symmetry functions [102], which provide a
structural fingerprint of the chemical environments up to a
cutoff radius of about 6−10 Å. The functional form of the
symmetry functions ensures that the potential is transla-
tionally and rotationally invariant, and due to the summa-
tion in equation (19) the potential is also invariant with
respect to permutations of like atoms. Consequently, this
approach overcomes all conceptual limitations of conven-
tional low-dimensional NNPs. For multicomponent sys-
tems long-range electrostatic interactions can be included
by an explicit electrostatic term employing environment-
dependent charges, which are constructed using a second
set of atomic NNs [103,104]. This high-dimensional NNP,
which is applicable to very large systems containing thou-
sands of atoms, has been applied to a number of systems

like silicon [105], carbon [106], sodium [107], copper [108],
GeTe [109], ZnO [104], the ternary CuZnO system [110],
and water clusters [111,112].

NNs have also been employed by Popelier and cowork-
ers to improve the description of electrostatic interactions
in classical force fields [33,113–115]. For this purpose they
have developed a method to also express higher order elec-
trostatic multipole moments of atoms as a function of the
chemical environment. The reference multipole moments
used to train the NNs are obtained from DFT calcula-
tions and a partitioning of the self-consistent electron den-
sity employing the concept of quantum chemical topology
(QCT) [116–118]. The neural network acts by taking the
input, the relative position of atoms about the atom for
which the predictions are made, and then expressing the
multipole moments up to high orders within the atomic
local frame. The advantage of this method is that all elec-
trostatic effects, such as Coulombic interactions, charge
transfer and polarization, which traditionally are repre-
sented in force fields using different interaction terms, are
instead treated equally since they all are a result of the
predicted multipoles. Furthermore this also means that all
electrostatic interactions are more realistic because of the
non-spherical nature of the atomic electron densities that
are described by the multipoles. Polarization is then a nat-
ural result of the prediction of these multipoles, as they
change as atoms move around, and atomic electron densi-
ties deform. It has been demonstrated that the accuracy of
electrostatic interactions in classical force fields can be sig-
nificantly improved, but if high-order multipoles are used,
the number of NNs to be evaluated can be substantial.

Recently, NNPs have also been constructed using in-
put coordinates, which have been used before in other
types of mathematical potentials. An illustrative exam-
ple is the use of permutationally invariant polynomials
by Li et al. [119], which have been used very success-
fully by Bowman and coworkers for a number of molec-
ular systems (cf. Sect. 2.1). On the other hand, in the
work of Fournier and Slava, symmetry functions similar
to those introduced by Behler [102], are used for an atom-
istic potential, but here a many-body expansion is em-
ployed rather than a neural network [120]. Using the sym-
metry functions as the dimensions of the descriptor space,
a clustering procedure can be used to define the atom
types. Within the PES, the energy contribution for an
atom is then determined from the linear combination of
each atom type. In a similar manner, a symmetry func-
tion based neural network can also be used for structure
analysis in computer simulations [121].

NNs and GPRs show similar limitations, namely their
inability to extrapolate accurate energies for atomic con-
figurations being very different from the structures in-
cluded in the training set. Boths methods are thus reliant
on the sampling of the training points to guide the fitting
of the function [122]. GPRs model smoothly varying func-
tions in order to perform regression and interpolation, and
typically the kernals used in most GPR models perform
poorly for extrapolation, though there are attempts to
address this issue [123].
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2.6 Support vector machines

Support vector machines (SVMs) [124] are a machine
learning method that has found much use in the fields of
bioinformatics and cheminformatics [125,126] mainly for
classification problems. However, SVMs can also be used
for regression and so are suitable for PES fitting, though
examples of such applications of SVMs are still rare.

In general, SVMs aim to define a linear separation of
data points in feature space by finding a vector that yields
the largest linear separation width between two groups of
points with different properties. The width of this separa-
tion is given by the reference points that lie at the margin
either side of the separating vector and these reference
points are called support vectors. A balance needs to be
found between finding the maximum separation, and er-
rors, which arise from those cases where data points lie
on the wrong side of the separation vector and so are
incorrectly classified.

Unfortunately, a linear separation is often impossible
in the original input coordinate feature space. This prob-
lem can be solved by transforming the input coordinates
and recasting them in a higher-dimensional space, where
a linear separation becomes possible. Depending on the
way this non-linear transformation is performed the lin-
ear separation vector found in this high-dimensional space
can then be transformed back into a non-linear separator
in the original coordinate space.

There are many ways to perform the transformation
from the original input space into the higher dimensional
feature space. One possibility is to define the dimensions of
the higher-dimensional space as combinations of the orig-
inal coordinates. This feature space could then in theory
contain an infinite number of dimensions. The classifica-
tion a(x), of a trial point xi, is then given by the general
form of a SVM

a(x) =
Nref∑

i=1

λiyiK(xi,x) − w0. (20)

The sum is over the number of support vectors, which
is equal to the number of reference examples. K is the
kernel that transforms the input, x, from the original rep-
resentation to the new higher order representation and
compares the similarity between the trial point and each
of the reference points.

Equation (20) can also be viewed as a representation of
a neural network by a SVM, where w0 would be the bias of
the hidden layer. This means that yi is the classification of
reference example xi, and λi is a coefficient. The elements
of K are found by:

K(xi,x) = tanh(k0 + k1〈xi,x〉). (21)

k0 is the bias weight of the first layer of the neural network.
Thus k1〈xi,x〉 is the dot product of the vectors, and so
is a measure of similarity. K(xi,x) in effect represents
the action of the first layer of hidden nodes of a neural
network, as it applies a hyperbolic tangent function to
k1〈xi,x〉.

A SVM is more general than a neural network, since
different kernels allow for other non-linear transformations
to be used. Without the non-linear transformation, each
element of the kernel can be viewed as a measure of sim-
ilarity between the reference points and the trial points.
If we perform the non-linear transformation to the kernel
we have two approaches. The first is to explicitly compute
the new variables of the vector with respect to the new
high-dimensional space. While this is trivial if the num-
ber of dimensions is small, the computation will grow in
complexity, quadratically, as more dimensions are added,
to the point where the computation will not fit within
the computer memory. A solution to this problem is the
so-called “kernel trick”, which accounts for the non-linear
transformation into a high-dimensional space, but where
the original dot product matrix is still used. The trans-
formation is then applied after finding the dot products.
Thus the non-linear transformation is implicit, and sim-
plifies the whole process, since this kernel is integral to
then finding the linear separation vector.

The main task to be solved when using SVMs is finding
the linear separator so that the distance of separation is
maximized, the errors in classification are reduced, and
identifying the appropriate non-linear transformation, or
kernel function, that yields the reference data in a new
high-dimensional feature space, where the separation can
be performed.

Since there is an infinite number of possible non-linear
transformations, and the use of multiple kernels can allow
for multiple classifications to be separated, it can hap-
pen that the flexibility offered by SVMs results in overfit-
ting and a loss of generalization capabilities. For this rea-
son, like in many other fitting methods, cross validation
is applied during fitting.

The linear separation in high-dimensional space is then
defined by:

w · X− b = 0, (22)

where X is a set of reference points that define the linear
separator, and w is the normal vector to the linear sepa-
rator. Furthermore the margins of the separation can be
defined by:

w · X− b = −1 (23)

and

w · X− b = 1. (24)

as shown in Figure 3.
The width of the separation is given by 2

‖w‖ . The ob-
jective of a SVM is then to maximize this separation. The
constraint of the linear separation can be rewritten as:

yi

(
w · xi − b

) ≥ 1, (25)

where xi is reference training point that must be correctly
classified, and yi is the classification function, i.e., the out-
put is then either 1 or −1. This can be modified to allow for
soft margins, and so allow for a degree of misclassification

yi

(
w · xi − b

) ≥ 1 − ξi. (26)
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w·X-b=1
w·X-b=0
w·X-b=-1

x1x1

x2 x2

Fig. 3. In the initial two-dimensional space that data points
(stars) fall into two groups – those within the circle, and those
outside of it. Within this space there is no way to perform a
linear separation. A kernel allows to recast the data points into
a new space where a linear separation is possible. Those within
the circle have classification ‘1’, and those outside have classi-
fication ‘−1’. The linear separation is defined by a vector, with
a gradient of w, and an intercept of b. The linear separation is
found as vector that gives the widest separation between the
two classes. This width is determined by two data points, the
support vectors.

ξi is called the slack variable, a measure of the degree
of misclassification. This is a penalty that must be mini-
mized, as part of the objective function J ,

min J(w, ξ) =
1
2
wT w + c

Nref∑

i=1

ξi, (27)

where c is a parameter modulating the influence of the
slack function.

For regression purposes like the construction of PESs,
the objective is the reverse problem, where the reference
data points should lie as close as possible to a linear sepa-
ration. This is the basis of Least-Squares Support Vector
Machines (LS-SVMs) and their applications to PESs in
the work of Balabin and Lomakina [127].

LS-SVMs require the minimization of

min J(w, b, e) =
ν

2
wT w +

ζ

2

Nref∑

i=1

e2
i . (28)

The slack values are now replaced by the sum of squared
errors ei of the reference points, and ν, and ζ, are pa-
rameters that determine the smoothness of the fit. Both
SVMs and GPRs are similar in that they can both be ad-
justed by the choice of the kernal function used. Gaussians
are frequently used as they are computationally simple to
implement, but other choices of functions can adjust the
sensitivity of the fitting method [128].

Specifically, Balabin and Lomakina used LS-SVMs to
predict energies of calculations with converged basis sets
employing electronic structure data obtained using smaller
basis sets for 208 different molecules in their minimum
geometry containing carbon, hydrogen, oxygen, nitrogen,
and fluorine. Therefore, while not describing the PES for
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I2 I3 I4I1
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XX

I2 I3 I4I1
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Fig. 4. The two parent Genetic Programming (GP) trees at
the top, have been randomly partnered, and at the same po-
sition on each tree the connection is marked by an ‘×’ where
the branches will be exchanged. At the end of the branches are
the input nodes, I1-I4, which provide information about the
system. At each node on the way up the tree an arithmetic op-
eration is performed that combines the values passed up from
the lower level. This process continues until the last node has
been reached, where the output is determined.

arbitrary configurations this approach is still an interest-
ing example of machine learning methods applied to en-
ergy predictions, and an extension to the representation
of PESs would be possible. In comparison to neural net-
works, the LS-SVM model required less reference points,
and provided slightly better results. Very recently, SVMs
have been used for the first time to construct a continu-
ous PES by Vitek et al. [129], who studied water clusters
containing up to six molecules.

2.7 Genetic programming – function searching

Genetic programming (GP) uses populations of solutions,
analyzes them for their success, and employs, similar to ge-
netic algorithms, survival of the fittest concepts as well as
mating of solutions and random mutations to create new
populations containing better solutions [130]. It is based
upon the idea of a tree structure (cf. Fig. 4). At the very
base of the tree are the input nodes which feed in infor-
mation about the configuration of the atomic system. As
one moves up the tree, two inputs from a previous level
are combined returning an output, which is fed upwards
the tree to the next node and so forth until in the upper-
most node a final arithmetic procedure is performed and
returns the output, the energy prediction. In this manner
complex functions can be represented as a combination of
simpler arithmetic functions.

Genetic Programming in the above manner then relies
on the randomization of the functions in all members of
the population. New daughter solutions are generated by
randomly performing interchanges between two members
of the best members of the parent population. The in-
terchange occurs by randomly selecting where in the tree
structure for each parent the interchange will occur. This
means that the tree structure can be very different for the
daughter solutions, with the tree structure having been
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extended or pruned. Randomly, the daughter solutions
may also undergo mutations, i.e., a change in a function
used in the tree structure, or a change in a parameter.
Many other types of crossover of tree structures can also
be used. Depending on the choice of functions, GPs can
have the advantage that they can provide human read-
able and sometimes even physically meaningful functions,
in contrast to most methods discussed above.

Genetic programming has been applied to simple
PESs, such as that of a water molecule [131], though more
complex formulations of GPs have been used by Bellucci
and Coker [132] to represent an empirical valence bond
potential formulation for determining the energy change
in reactions. Here, three PESs have to be found, one of
the products, one for the reactants, and one that relates
the two surfaces and describes the reaction. Bellucci and
Coker build on the concept of directed GPs, where the
functional form of the PES is partially defined, and the
GP search modifies and improves this first potential. For
example the GP searches for the best function that per-
forms a non-linear transformation on the inputs before
they are passed to the main predefined function. The aim
is to find the best Morse and Gaussian functions that to-
gether describe the reactions. They go beyond traditional
GP in the use of multiple GPs, where a higher level of
GP modifies the probabilities of the search functions that
direct the lower level GP fitting the PES functions.

Brown et al. proposed a hierachical approach to GP
where the GP population is ranked based upon their fit-
ness [133]. This allows for the training procedure to retain
individuals so that, while convergence is achieved, it is not
at the cost of the diversity of the solutions. Maintaining a
diverse set of solutions for the PES fitting allows for the
generation of better approximations to the global mini-
mum of the target function, rather than just converging
to a local minimum. The ranking of solutions is similar to
the concept of multi-objective genetic algorithms and the
use of Pareto ranking [134].

3 Discussion

All the potentials discussed in this review have in common
that they are employing very general functional forms,
which are not based on physical considerations. There-
fore, they are equally applicable to all types of bonding
and in this sense they are “non-physical”, i.e., they are
completely unbiased. In order to describe PESs correctly,
the information about the topology of the PESs needs to
be provided in form of usually very large sets of reference
electronic structure calculations, and the presented poten-
tials differ in the manner this information is stored. For
some of the potentials it is required that this data base
is still available when the energy of a new configuration
is to be predicted. This is the case for the MSI, IMLS,
and GPRs making these methods more demanding with
growing reference data set size. On the other hand, these
methods reproduce the energies of the reference structures
in the final potentials error-free. Methods like NNPs and

permutation invariant polynomials transform the informa-
tion contained in the reference data set into a substantial
number of parameters, and the determination of a suitable
set of parameter values can be a demanding task as far as
computing time is concerned. Still, in contrast to many
conventional physical potentials, there is usually no man-
ual trial-and-error component in the fitting process. Often,
like in case of NNPs, gradient-based optimization algo-
rithms are used, but they bear the risk of getting trapped
in local minima of the high-dimensional parameter space,
and there is usually no hope to find the global minimum.
Fortunately, in most cases, sufficiently accurate local min-
ima in parameter space can be found, which yield reliable
potentials.

An interesting alternative approach to find the param-
eters, which has been used a lot in the context of potential
development, but not for the potentials above, is to em-
ploy genetic algorithms (GAs) [135]. Like neural networks
they represent a class of algorithms inspired by biology
and belong to the group of machine learning techniques.
GAs work by representing the parameters determining a
target value as a bit string. This bit string is randomized
and used to generate an initial population of bit strings
that represent a range of values for the parameters. Thus,
the bit string represents not one, but a series of parameter
values, where each member of the population has differ-
ent values for these parameters, but each parameter can
only vary within given thresholds. Each member of the ini-
tial population is assessed for its performance. The best
performing members of the population are then used to
generate the next “daughter population”. This is done by
randomly selecting where along the bit string two popula-
tion members undergo an interchange. The result is that
from two “parent” bit strings two daughter bit strings are
obtained. The central idea is that one of the daughter bit
strings will retain the best parameters of both parents. In
order to allow for exploration of the parameter space, the
daughters may also randomly undergo a “mutation”. A
mutation is where a random bit in the daughter bit string
is switched from 0 to 1, or vice versa. The final stage is to
combine the daughter and parent populations, and from
the combined population, remove the poorly performing
bit strings. The final population then should be a combi-
nation of the previous population and the newer daughter
population. From this new population, the process can be
started again, and over a number of generations the pop-
ulation should converge on a bit string that gives the best
parameter set. GAs have found wide use for many prob-
lems in chemistry and physics, such as the searching the
conformation space [136,137] and protein folding [138], as
well as the assignment of spectral information [139,140].

GAs have also been used in many cases for the determi-
nation of parameters in atomistic potentials. The aim is to
find a set of parameters that minimizes a fitness function,
where the fitness is given as a sum of weighted squared
errors. For instance, the work of Marques et al. aims to si-
multaneously fit the potential, in their case the extended-
Rydberg potential, for NaLi and Ar2 to both ab initio
energies and to spectral data [141]. Similarly, in the work
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of Da Cunha et al. [142] 77 parameters have been fitted for
the Na + HF PES, and Roncaratti et al. [143] used GAs to
find the PESs of H+

2 and Li2. Xu and Liu use a GA to fit
the EAM model for bulk nickel where six parameters have
been varied [144]. Rather than fitting parameters, a GA
can also be used to identify energetically relevant terms
from a large number of possible interactions, which has
been suggested for the cluster expansion method in the
approach taken by Hart et al. [145,146]. The danger in all
of these cases is that the GA will yield a single solution,
and that this solution represents the optimization of the
objective function to a local minimum. Therefore there
is the need to rerun the fitting procedure from different
starting points, i.e., different positions on the PES fitting
error surface, in order to not get trapped in local minima.

Parameter fitting for force fields has also been investi-
gated by Pahari and Chaturvedi [147], Larsson et al. [148],
and Handley and Deeth [149]. In the work of Larsson
et al. GAs are used to automate the exploration of the
multidimensional parameter space of the ReaxFF force
field, where 67 parameters are to be optimized for the
prediction of the PES of SiOH. Pahari and Chaturvedi
perform a GA fitting of 51 of the ReaxFF parameters,
which were determined to be important to the description
of CH3NO. In the work of Handley and Deeth the aim has
been to parameterize the Ligand Field Molecular Mechan-
ics (LFMM) force field for the simulation of iron amine
complexes [149]. LFMM augments standard force fields
with terms that allow for determination of the influence
of d-orbital electrons on the PES. Here a multi-objective
GA approach has been implemented, where Pareto front
ranking is performed upon the population [134].

GAs have not yet been employed to find parameters
for the potentials reviewed above, and certainly further
methodical extensions are required to reduce the costs of
using GAs for determining thousands of parameters, e.g.,
in case of NNPs. The reason for these high costs is that the
determination of the fitness function requires performing
gradient-based optimizations of the parameters for each
member of the population in each generation, since mu-
tations or crossovers for the generation of new population
members typically results in non-competitive parameter
sets that need to be optimized to find the closest local
minimum.

4 Conclusions

A variety of methods has now become available to con-
struct general-purpose potentials using bias-free and flexi-
ble functional forms enabling the description of all types of
interactions on an equal footing. These developments have
been driven by the need for highly accurate potentials pro-
viding a quality close to first-principles methods, which is
very difficult to achieve by conventional atomistic poten-
tials based on physical approximations. The selection of
the specific functional forms of these “next-generation po-
tentials” has been guided by the physical problems to be
studied, and there are methods aiming primarily at low-
dimensional systems like small molecules and molecule-

surface interactions, e.g. polynomial fitting, the modified
Shepard interpolation, and IMLS. Other methods have
focussed on condensed systems and are able to capture
high-order many-body interactions as needed for the de-
scription of metals, like NNPs and GPRs. The use of fur-
ther methods, like support vector machines and genetic
programming, for the construction of potentials is still less
evolved, but this will certainly change in the near future.

All of these potentials have now overcome the con-
ceptual problems related to incorporating the rotational
and translational invariance as well as the permutation
symmetry of the energy with respect to the exchange of
like atoms. Most of the underlying difficulties rather con-
cerned the geometrical description of the atomic config-
urations than the fitting process itself. A lot of interest-
ing solutions have been developed for this purpose, which
should in principle be transferable from one method to
another. The current combinations of these quite modu-
lar components, i.e., describing the atomic configuration
and assigning the energy, have been mainly motivated by
the intended applications. Therefore, it is only a question
of time when ideas will spread and concepts from one ap-
proach will be used in other contexts to establish even
more powerful techniques.

At the present stage, it has been demonstrated for
many examples covering a wide range of systems, from
small molecules to solids containing thousands of atoms,
that a very high accuracy of typically only a few meV
per atom with respect to a given reference method can
be reached. However, due to the non-physical functional
form, large reference data sets are required to construct
these potentials making their development computation-
ally more demanding than for most conventional poten-
tials. Still, this effort pays back quickly in large-scale appli-
cations, which are simply impossible otherwise. However,
the number of applications, which clearly go beyond the
proof-of-principle level by addressing and solving physical
problems that cannot be studied by other means, is still
moderate. Most of these applications can be related to a
few very active research groups, which are involved in the
development of these methods and have the required ex-
perience. This is because presently the complexity of the
methods and of the associated fitting machinery is a ma-
jor barrier towards their wider use, but again, it is only a
question of time when more program packages will become
generally available.

In summary, tremendous progress has been made in
the development of atomistic potentials. A very high ac-
curacy can now be achieved, and it can be anticipated
that these methods will be further extended and become
established tools in materials science. Some challenges re-
main, like the construction of potentials for systems con-
taining a very large number of chemical elements, which
are difficult to describe geometrically and rather costly to
sample when constructing the reference sets due to the
size of their configuration space. On the other hand, to
date only a tiny fraction of the knowledge about machine
learning methods, which is available in the computer sci-
ence community, has been transferred to the construction
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of atomistic potentials. Consequently, many exciting new
developments are to be expected in the years to come.
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Rev. B 87, 184115 (2013)
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