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Abstract. It is shown that exciton swapping between two graphene sheets may occur under specific con-
ditions. A magnetically tunable optical filter is described to demonstrate this new effect. Mathematically,
it is shown that two turbostratic graphene layers can be described as a “noncommutative” two-sheeted
(2 +1)-spacetime thanks to a formalism previously introduced for the study of braneworlds in high energy
physics. The Hamiltonian of the model contains a coupling term connecting the two layers which is similar
to the coupling existing between two braneworlds at a quantum level. In the present case, this term is
related to a K-K′ intervalley coupling. In addition, the experimental observation of this effect could be a
way to assess the relevance of some theoretical concepts of the braneworld hypothesis.

1 Introduction

During the last few years, graphene has taken a grow-
ing importance in solid-state physics [1–41]. Indeed, it
is an amazing case of two-dimensional carbon crystal,
and its remarkable properties make it a strategic ma-
terial for future nanotechnologies. For instance, doped
graphene [36,37] thanks to electrostatic gating [38,39] can
lead to efficient tunable optical devices. Moreover, re-
cent works on graphene also underline the importance
of electronic transport in turbostratic (twisted) bilay-
ers [3–17]. In this context, the study of the specific fea-
tures of graphene is of prime importance to develop new
technological applications. In the present paper, we de-
scribe a new effect in which exciton swapping may occur
between two graphene layers. An experimental device re-
lying on a magnetically tunable optical filter is suggested.
On a theoretical point of view, exciton swapping is well
described by using a formalism introduced previously in
high energy physics to describe the quantum dynamics of
particles in a two-brane Universe.

During the last two decades, the possibility that
our observable (3 + 1)-dimensional Universe could be
a sheet (a 3-brane or braneworld) embedded in a
(N + 1)-dimensional spacetime (called the bulk, with
N > 3) has received a lot of attention [42–45]. Such an
exotic concept appears very productive to solve puzzling
problems beyond the standard model of particles [42–45].
In recent papers [46–49], it was proved that in a uni-
verse made of two branes, the quantum dynamics of Dirac
fermions can be rigorously described in a more simple
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and equivalent frame that corresponds to a two-sheeted
spacetime in the formalism of the noncommutative ge-
ometry [46,47]. Noncommutative geometry is a wide con-
cept which covers different aspects [50–56]. For instance,
it can concern a 3-dimensional space with noncommuta-
tive coordinates [40,41,54–56]. But it can also be a way
to describe a discrete two-sheeted spacetime such that
local coordinates (i.e. on each spacetime sheet) remain
commutative [46,47,50–53]. In the braneworld model, the
coupling term connecting the branes at a quantum level
leads to Rabi oscillations between the two worlds, for par-
ticles endowed with a magnetic moment and subjected to
a magnetic vector potential [46–49].

Graphene layers are known to be solid-state re-
alizations of a (2 + 1)-spacetimes in which massless
fermion live. For that reason, graphene is well adapted
to study theoretically and experimentally concepts of
low-dimensional electrodynamics and quantum dynam-
ics [20–24]. Since a graphene sheet can be considered as
2-brane embedded in a (3 + 1)-bulk, a graphene bilayer
could be a solid-state realization of a universe containing
two branes (a two-brane universe). In the present paper,
we show that this analogy is well-sounded and we demon-
strate the possibility to apply tools from noncommutative
geometry to study such a system. The fact that a noncom-
mutative geometry can emerge in graphene is an intriguing
possibility. Noncommutative geometry as a suitable tool
to study graphene monolayer properties has already been
reported in literature [40,41] in the context of noncommu-
tative coordinates. Nevertheless, it will be shown in the
present paper that a graphene bilayer can be a solid-state
realization of a “noncommutative” two-sheeted spacetime.
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Fig. 1. (a) Hexagonal lattice of graphene with the two sub-
lattices A and B. a1 and a2 are the vectors of the unit cell.
(b) Brillouin zone of the hexagonal lattice. (c) Energy behav-
ior in the vicinity of the Dirac points K and K′.

In addition, our approach suggests that exciton swap-
ping may occur between the two graphene layers, which is
a solid-state counterpart of particle oscillations predicted
in brane theory [46–49].

In Section 2, we recall the basic assumptions under-
lying the description of electron and hole in graphene
through a Dirac equation formalism. Next, in Section 3,
we present the model of fermion dynamics in a two-sheeted
spacetime and its adaptation to describe a set of two
graphene layers. In Section 4, using a tight-binding ap-
proach, it is shown that considering two twisted graphene
layers is a prerequisite to get a K-K ′ intervalley coupling
between two perfect graphene layers in mutual interac-
tion as described in Section 3. This is this coupling which
leads to excitonic swapping between the layers as shown
in Section 5. Finally, in Section 6, an experimental device
is suggested to investigate this new effect.

2 Graphene electronic properties

Graphene is a one-atom thick layer made of sp2 carbon
atoms in an hexagonal lattice arrangement (Fig. 1a) [1,2].
Self-supported ideal graphene is a zero-gap semiconductor.
In the vicinity of the six corners (called Dirac points) of
the two-dimensional hexagonal Brillouin zone (Fig. 1b),
the electronic dispersion relation is linear for low ener-
gies (Fig. 1c). Electrons (and holes) can then be described
by a Dirac equation for massless spin−1/2 particles in
an effective (2 + 1)-spacetime [2]. While massless Dirac
fermions propagate at the speed of light in the (3 + 1)
Minkowski spacetime, in graphene the effective massless
Dirac fermions propagates at the Fermi velocity (vF ≈
106 m s−1 in the present case). On a graphene layer, the
Hamiltonian of the effective Dirac equation is given by [2]:

H± = −i�vF (σ1∂x ± σ2∂y) +mv2
fσ3 (1)

where “+” (respectively “−”) refers to the K (respec-
tivelyK ′) Dirac point of the Brillouin zone of the graphene
hexagonal structure (Fig. 1a). σk (k = 1, 2, 3) are the usual

Pauli matrices. For a self-supported graphene sheet the
mass term m is equal to zero and electrons (and holes)
behave as relativistic quasiparticles. Nevertheless m may
differ from zero in the case of a sheet deposited on a
substrate [25–28]. Using m → mvF /� and (x0, x1, x2) =
(vF t, x, y), from equation (1) it is possible to conveniently
describe the electron (or hole) dynamics through an effec-
tive Dirac equation such that [2]:

(iγη∂η −m)ψ = 0 (2)

with η = 0, 1, 2 and

γ0 =
(
σ3 0
0 σ3

)
, γ1 =

(
iσ2 0
0 iσ2

)
, γ2 =

(
−iσ1 0

0 iσ1

)
(3)

such that {
γη, γϑ

}
= 2gηϑ (η, ϑ = 0, 1, 2)

with
gηϑ = diag(1,−1,−1).

The wave function is defined as:

ψ =
(
χ
θ

)
where χ (respectively θ) is related to the wave function on
K (respectively K ′). In addition, χ (respectively θ) can be
written as:

χ =
(
χA

χB

) (
respectively θ =

(
θA

θB

))
where A and B are related to the two sublattices of the
graphene sheet (see Fig. 1a). While one does not consider
the usual electronic spin, a pseudospin arises, for which
the two states are related to the two labels A and B of
the graphene sublattices [1]. In addition, since there is two
inequivalent families of Dirac cones (respectively located
at points K and K ′ in the Brillouin zone), an isospin de-
gree of freedom also arises from the two states associated
with the two kinds of Dirac points [19].

It can be noticed that the above (2+1)-Dirac equation
can be easily extended to its (3 + 1)-dimensional version.
γ3 and γ5 matrices (such as γ5 = iγ0γ1γ2γ3) can be in-
troduced and we may consider for instance:

γ3 =
(

0 −σ1

σ1 0

)
, − iγ5 =

(
0 iσ1

iσ1 0

)
. (4)

The Clifford algebra is verified since:

{γμ, γν} = 2gμν ,
{
γ5, γν

}
= 0 and (−iγ5)2 = −1,

where gμν is the four-dimensional metric tensor of the
Minkowski spacetime (with μ, ν = 0, 1, 2, 3). Note that the
γ3 and γ5 matrices are interchangeable through substitu-
tions γ3 → iγ5 and −iγ5 → γ3 which lead to equivalent
descriptions. Moreover, it is well known that γ5 can be
also used to define a five-dimensional Dirac equation as
shown in Section 3.
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3 Two-layer graphene
as a “noncommutative” two-sheeted
spacetime

Let us consider a graphene layer as a 3-brane, i.e. a three-
dimensional space sheet, for which one dimension (say x3)
is reduced to zero. We suggest to derive the graphene bi-
layer system description from the two-sheeted spacetime
model introduced in previous works [46–49] by making
x3 → 0. The resulting model will be supported in Sec-
tion 4 with a tight-binding approach.

In a prior work, the relevance of the two-sheeted ap-
proach was rigorously demonstrated for braneworlds de-
scribed by domain walls [46]. Indeed, when one studies
the low-energy dynamics of a spin−1/2 particle in a two-
brane Universe, the quantum dynamics of this particle is
equivalent to the behavior it would have in a two-sheeted
spacetime described by noncommutative geometry [46].

Specifically, a two-sheeted spacetime corresponds to
the product of a four-dimensional continuous manifold
with a discrete two-point space and can be seen as a five-
dimensional universe with a fifth dimension reduced to
two points with coordinates ±δ/2. Both sheets are sep-
arated by a phenomenological distance δ, which is not
the real distance between the graphene layers as shown
in the next section. Mathematically, the model relies on
a bi-euclidean space X = M4 × Z2 in which any smooth
function belongs to the algebra A = C∞(M) ⊕ C∞(M)
and can be adequately represented by a 2 × 2 diagonal
matrix F = diag(f1, f2). In the noncommutative geom-
etry formalism, the expression of the exterior derivative
D = d + Q, where d acts on M4 and Q on the Z2 inter-
nal variable, has been given by Connes and Lott [50,51]:
D : (f1, f2)→ (df1, df2, g(f2−f1), g(f1−f2)) with g = 1/δ.
Viet and Wali [52,53] have proposed a representation of
D acting as a derivative operator and fulfilling the above
requirements. Due to the specific geometrical structure of
the bulk, this operator is given by:

Dμ =
(
∂μ 0
0 ∂μ

)
, μ = 0, 1, 2, 3 and D5 =

(
0 g
−g 0

)
, (5)

where the term g acts as a finite difference operator along
the discrete dimension. Using (5), one can build the Dirac
operator defined as /D = ΓNDN = ΓμDμ + Γ 5D5. It
is then convenient to consider the following extension
of the gamma matrices (by using the Hilbert space of
spinors [50,51]):

Γμ =
(
γμ 0
0 γμ

)
and Γ 5 =

(
γ5 0
0 −γ5

)
. (6)

In the present work, γμ and γ5 = iγ0γ1γ2γ3 are the
Dirac matrices defined by relations (3) and (4) relevant
for graphene. We can therefore introduce a mass term
M = m18×8 as in the standard Dirac equation. The two-
sheeted Dirac equation then writes [46–48]:

/DdiracΨ =
(
i /D −M

)
Ψ =

(
iΓNDN −M

)
Ψ (7)

=
(
iγμ∂μ −m igγ5

igγ5 iγμ∂μ −m

)(
ψα

ψβ

)
= 0

with Ψ =
(
ψα

ψβ

)
the two-sheeted wave function. In

this notation, the indices “α” and “β” discriminate each
sheet [46–48], i.e. each graphene layer when x3 → 0. Each
component of the wave function ψ is then the probability
amplitude of the electron (or hole) in each graphene sheet.
It is important to point out the Lagrangian term:

Lc = ΨiΓ 5D5Ψ (8)

which ensures the coupling between each graphene layer
through K-K ′ processes as explained in Section 4. That
means that the Lagragian Lc couples both each graphene
layer but also the isospin states (thanks to the γ5 matrix).
Conversely, in the present work the noncommutative ge-
ometry model emerges from K-K ′ interlayer couplings.
The Lc term is the main reason for this paper as it will
allow excitonic swapping between the graphene layers.

Let us now introduce the effect of an electromagnetic
field, i.e. an U(1) gauge field. To be consistent with the
two-sheeted structure of the Dirac field Ψ in equation (7),
the usual U(1) electromagnetic gauge field should be re-
placed by an extended U(1) ⊗ U(1) gauge field [46–48].
Nevertheless, in the present work, we assume that electro-
magnetic field sources are out of the graphene layers. The
group representation G = diag(exp(−iqΛα), exp(−iqΛβ))
is therefore reduced to G = diag(exp(−iqΛ), exp(−iqΛ)).
We are looking for an appropriate gauge field such that
the covariant derivative becomes /DA → /D + /A with the
gauge transformation rule /A

′ = G/AG† − iG
[
/Ddirac, G

†].
A convenient choice is [46–48]

/A =
(
iqγμAα

μ 0
0 iqγμAβ

μ

)
. (9)

Aα
μ (respectively Aβ

μ) is the magnetic vector potential Aμ

on the graphene layer α (respectively β). According to the
appropriate covariant derivative, the introduction of the
gauge field in equation (7) leads to [46–48](
iγμ(∂μ + iqAα

μ)−m igγ5

igγ5 iγμ(∂μ + iqAβ
μ)−m

)(
ψα

ψβ

)
= 0.

(10)
Of course, for graphene sheets, we have x3 = 0, which
corresponds to two bidimensional sheets instead of three-
dimensional space sheets. In addition, we will assume that
Aμ is parallel to graphene layers (A3 = 0).

4 K-K′ couplings in twisted graphene layers

In braneworld models, we simply have to consider the in-
teraction between one fermion and domain walls described
by a scalar field [46]. By contrast, a bilayer graphene
is formally a many-body problem. Therefore we should
normally consider the whole dynamics of carbon atoms
and their electrons. This would be a very complicated
task of course. As a consequence, we use the common
tight-binding approach [3–17] to show the shared formal-
ism between graphene bilayer and two-sheeted spacetime.
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Fig. 2. Sketch of the two twisted graphene layers under con-
sideration. Both sheets are rotated with respect to each other
with an angle θ ≈ 21.787◦. t1 and t2 are the vectors of the
Moiré unit cell.

Moreover, the existence of coupling terms proportional to
g is straightforward for turbostratic graphene layers as ex-
plained hereafter. When two graphene layers are twisted
with respect to each other, a typical Moiré pattern can be
observed [3–9] (Fig. 2). This occurs when both layers are
commensurate, i.e. when two specific kind of atoms of each
layer can be superimposed periodically [3–9]. The Moiré
pattern can be then described through a periodic unit cell
defined by vectors t1 and t2 (see Fig. 2) and can only ex-
ist for a specific rotation angle θ = θp,q (with p, q ∈ N)
between both layers.

Let us define a1 = a0(1/2,
√

3/2) and a2 =
a0(−1/2,

√
3/2), the vectors of the real space which define

the unit cell of the first graphene layer (see Fig. 1a). a0 is
the lattice parameter. Two kinds of commensurate struc-
tures can be considered [3–5]. The first one is such that
the vectors of the Moiré unit cell are t1 = pa1 + (p+ q)a2

and t2 = −(p+ q)a1 + (2p+ q)a2 such that gcd(q, 3) = 1.
The second case is such that t1 = (p + q/3)a1 + (q/3)a2

and t2 = −(q/3)a1 + (p + 2q/3)a2 with gcd(q, 3) = 3. In
both cases, the rotation angle θp,q between both sheets is
given by [3–5]:

cos θp,q =
3p2 + 3pq + q2/2
3p2 + 3pq + q2

. (11)

In the first layer, the first K Dirac cone is located at K =
(4π/(3a0))(1, 0) while the K ′ Dirac cone is at K′ = −K.
By contrast, in the second layer, due to the rotation the
K Dirac cone is located at Kθ = (4π/(3a0))(cos θ, sin θ)
whenever the K ′ Dirac cone is at Kθ′ = −Kθ [3–5]. Let
G1 and G2 be the vectors of the unit cell of the reciprocal
lattice of the Moiré pattern. Obviously, the Moiré pattern
can be responsible for coupling between valleys of each
layer [3–9]. Indeed, we get

G = K−Kθ = −
(
K′ −K′ θ) (12)

for K-K couplings, and

Gc = K−K′ θ = −
(
K′ −Kθ

)
(13)

for K-K ′ couplings. When gcd(q, 3) = 1, then G =
−(q/3) (2G1 + G2) and Gc = −(2p+ q)G2. While, when
gcd(q, 3) = 3, then G = −(q/3) (G1 + G2) and Gc =
(1/3)(2p+ q) (G1 −G2) . The greater G and Gc are, the
weaker the couplings are. As a consequence, one should
consider the lowest values of p and q. A similar consid-
eration leads us to expect that K-K interlayer couplings
are usually stronger than the K-K ′ ones. Then, for the
purposes of our study, it should be relevant to consider a
structure which can suppress the K-K couplings while en-
hancing the K-K ′ interlayer couplings. We may consider
for instance the case such that gcd(q, 3) = 1 with q = 1. In-
deed, in that case G = −(1/3) (2G1 + G2) is not a vector
of the reciprocal lattice. By contrast Gc = −(2p + 1)G2

is always a vector of the reciprocal lattice and is such that
Gc ≈ 2K whatever p. The first relevant value to be con-
sidered is then p = 1. In this case, θ1,1 ≈ 21.787◦ and we
obtain the specific structure shown in Figure 2. Of course,
other angles θp,q lower than θ1,1 could be considered. But
without loss of generality, we choose the case θ = θ1,1 to
illustrate our topic.

Let us now justify the use of the noncommutative two-
sheeted Dirac equation thanks to a solid-state approach.
The whole detailed calculations are given in Appendix A
and we focus below on the heuristic arguments. In a tight-
binding approach it is possible to define the operator
a†α(β),j

(respectively aα(β),j), which creates an electron
(respectively a hole) on the site j of the sublattice “A”
on the α graphene layer (or on the β graphene layer).
The same convention is used for the sublattice “B”. If one
considers the interlayer coupling, one gets for the twisted
system [3–10]:

Hc = −
∑

j

tAB,ja
†
α,jbβ,j −

∑
j

tBA,jb
†
α,jaβ,j +H.c. (14)

where the energies tuv,j (with u = A,B and v = A,B) are
related to the interlayer hopping between the nearest sites
of each layer. This dependence of tuv,j vs. the location j
is very specific for two turbostratic graphene layers. In
the structure considered here, we can see that no AA site
exists by contrast to the AB sites (Fig. 2). We then assume
that tAA,j ≈ tBB,j ≈ 0. In addition, tAB(Rj) = tAB,j =
−t′ when Rj = (2/3)(t1 + t2) + (nt1 + mt2) (with t1 =
a1+2a2 and t2 = −2a1+3a2) and tBA(Rj) = tBA,j = −t′
when Rj = (1/3)(t1 + t2) + (nt1 +mt2), with n,m ∈ N.
tAB,j and tBA,j are equal to zero elsewhere. We use the
following Fourier transform of the operators:

aα(β)(rj) = aα(β),j =
∑

k

1√
N
aα(β),qk

eir
(′)
j ·q(′)

k (15)

with a similar convention for bα(β),j and where ri (respec-
tively r′i) is the position vector of the site i in the first
graphene layer (α) (respectively in the second graphene
layer (β)). Then, qk (respectively q′

k) is a momentum in
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layer (α) (respectively (β)). N is the number of sites. Let
us consider a single particle state with momentum k such
that we can consider the restricted Fourier representation
of the Hamiltonian: Hc = Hc,K+k +Hc,K′+k +Hc,Kθ+k +
Hc,Kθ′+k such that Hc = Ψ †HcΨ with (see Appendix A):

Hc = −i�vFΓ
0Γ 5D5 + �vFΓ

3D6 (16)

and

Ψ t = (aα,K bα,K aα,K′ bα,K′ aβ,K bβ,K aβ,K′ bβ,K′)

∼
(
ψt

α ψ
t
β

)
(17)

and where we have defined:

D6 =

(
0 g̃

−g̃ 0

)
(18)

by analogy with notations (5). The discussion about the
precise meaning and the physical consequences of the D6

term is out of the present topic but deserves further works.
In addition, the effective coupling constants are then given
by g = (t′/vF �) cos(θ/2) and g̃ = (t′/vF �) sin(θ/2). Notic-
ing that g̃/g = tan(θ/2), since θ ≈ 21.787◦ in our present
case, we note that g̃/g ≈ 0.2, i.e. the effective cou-
pling constant g̃ is five times lower than g. As a conse-
quence, in the following we focus on the processes carried
by the coupling constant g, and the remaining coupling
Hamiltonian is:

Hc = −ivF �Γ 0Γ 5D5. (19)

Using the above notations, the Lagrangian term related to
Hc in Dirac notation then becomes Lc = ΨiΓ 5D5Ψ , i.e.
equation (8) related to equation (7).

Now, the coupling constant g can be then defined
as g ≈ t′/�vF and the phenomenological distance is
δ = �vF /t

′. Basically, g and δ must depend on the real
distance d between each graphene sheet. Indeed, the hoop-
ing energy t′ varies as [9]: t′ ∼ t0 exp(5.43(1 − d/am)),
with t0 ≈ 0.3 eV [2,9,10], and here d is the distance be-
tween two layers, while am is the nearest interlayer dis-
tance, am = 3.35 Å. For closest layers (d = am), we get δ
of about 22 Å (i.e. g ≈ 4.5× 108 m−1). As an indication,
note that for d = 2am (respectively d = 5am), one gets
g ≈ 2× 106 m−1 (respectively g ≈ 1.7× 10−1 m−1).

5 Phenomenology of the model

Following previous works [46–48], we focus on the nonrel-
ativistic limit of our Dirac like equation. Defining ∇ =
(∂1, ∂2), A = (A1, A2), σ = (σ1, σ2) and B3 = ∂1A2 −
∂2A1 and using:

FA(B) =
(
χA(B)

θA(B)

)
,

and following the well-known standard procedure, a
two-layer Pauli equation can be derived from equa-
tion (10) [46–49]:

i�
∂

∂t

(
FA,α

FA,β

)
= {H0 + Hcm}

(
FA,α

FA,β

)
, (20)

where FA,α and FA,β correspond to the wave func-
tions in the graphene layers α and β, respectively. The
Hamiltonian H0 is a block-diagonal matrix such that
H0 = diag (Hα,Hβ), where each block is simply the
effective Pauli Hamiltonian expressed in each graphene
layer [46–49]:

Hα(β) = − �
2

2m

(
∇− i q

�
Aα(β)

)2

+μ3B3,α(β)+Vα(β) (21)

such that Aα and Aβ correspond to the magnetic vector
potentials on the layers α and β, respectively. The same
convention is applied to the magnetic fields Bα(β) and to
the potentials Vα(β). In the following, since we consider
neutral excitons, we can set Vα(β) = 0. In addition, we
will show hereafter that B3,α(β) = 0 in the device under
consideration (see Sect. 6). We set μ = γ(�/2)σ, where
γ is the iso-gyromagnetic ratio and μ the iso-magnetic
moment related to the isospin of the particle [35]. With
this choice, the present approach can be extended to any
particle endowed with a magnetic moment whatever its
isospin value.

In addition to these usual terms, the two-layer
graphene Hamiltonian comprises also a new specific
term [46–49]:

Hcm =
(

0 −igμ · {Aα −Aβ}
igμ · {Aα −Aβ} 0

)
. (22)

Hcm is obviously not conventional and describes the cou-
pling of the layers through electromagnetic fields. It van-
ishes for null magnetic vector potentials. Intuitively, the
coupling generated by this term will imply Rabi oscilla-
tions of electrons or holes between both graphene sheets
due to electronic delocalization.

6 Exciton swapping between two graphene
layers and experimental device

Guided by the previous equations, we now suggest an ex-
perimental approach for testing exciton swapping between
two graphene layers. An incident electromagnetic wave
with an appropriate energy can excite an electron-hole
bound pair (i.e. an exciton) [29–34] on a first graphene
layer (Gα). In the best of our knowledge, studies related to
the magnetic moment of exciton in graphene are still lack-
ing. Nevertheless, exciton should exhibit resonance states
endowed with non-zero magnetic moment μ [57,58] due
to the combination of the electron/hole magnetic mo-
ments [35], possibly supplemented by an orbital mag-
netic moment. One can then expect to induce a coupling
through Hcm between Gα and a second graphene layer Gβ

leading to a swapping of the exciton from Gα towards Gβ .
Afterwards, the exciton decay on the second layer could
be recorded.

The required magnetic vector potentials can be pro-
duced with the following device. Let us consider two coax-
ial annular magnets coated with an insulating material
(see Fig. 3a). Both magnets have the same rectangular
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Fig. 3. Sketch of a feasible experimental setup. (a) Basic setup.
Two coaxial annular magnets, with different inner and outer
diameters, coated by an insulating material. The upper ring
is filled up with an opaque material. Two magnetic fields (Bα

and Bβ) turn around the symmetry axis of the magnets. Two
graphene layers (Gα and Gβ) are considered, each one de-
posited on a face of a magnet. The geometry of the device
allows for the existence of two opposite magnetic vector po-
tentials Aα and Aβ (red arrows), each one in the vicinity of a
graphene layer. An incident photon γi pumps an exciton e on
Gα. A photon γt resulting from the exciton decay on Gβ can be
recorded. (b) Full setup. Rectangular array of annular devices
deposited on a transparent substrate (blue layer). The area be-
tween the toroidal magnets is filled with an opaque material
(yellowish layer). Such a setup allows to enhance the recorded
signal by increasing the graphene area.

section. Both magnetic fields (Bα and Bβ) inside the
magnets turn around the symmetry axis of the magnets.
Bα = Bβ = 0 outside the magnets due to the toroidal
topology [59,60]. Only a magnetic vector potential A ex-
ists outside the magnet [59,60] (i.e.∇×A = 0). Boundary
conditions result from

∮
C A ·dl = Φ, where C is a contour

on a magnet (see Fig. 3) and Φ the magnetic flux inside a
magnet. The geometry of the device leads to two opposite
magnetic vector potentials (Aα and Aβ), each one in the
vicinity of a graphene layer (Gα and Gβ) deposited on a
face of a magnet (see Fig. 3a). A straightforward calcu-
lation shows that |Aα −Aβ | ∼ 2A0d/(L + l), with d the
distance between the two layers, L and l are the length and
width of rectangular section of the magnets. If one consid-
ers a superconducting magnet, then A0 ∼ nh/(4e(L+ l)),
where n is an integer (h is the Planck constant and e
the electric charge), due to the magnetic flux quantiza-
tion [61]. For instance, if L = 1 μm and l = 10 nm [59,60]
and with d = 2am, one gets |Aα −Aβ | ≈ 1.4×10−12 T m
for n = 1.

The insulating material is the substrate on which
the graphene layers are deposited. This allows a gated
graphene leading to electrons and holes sharing the same
effective mass [25,26]. The efficient graphene area can be
increased by using a large array of micro-annular devices
(see Fig. 3b).

The excitonic swapping can be described as follows.
One looks for an exciton wave function in the form:

|Φ(t)〉 =
(
FA,α(t)
FA,β(t)

)
(23)

= aα(t)
(
Ψs

0

)
+ aβ(t)

(
0
Ψs

)
,

where it is assumed that μΨs = ±μΨs, i.e. Ψs is an eigen-
state of μ with an eigenvalue μ different from zero. For
an exciton, the lowest expected value can be estimated by
μ ∼ e�/m [57,58], i.e. μ ≈ 3.5× 10−22 J T−1 for an effec-
tive electron/hole mass about 0.3 eV [25–27]. Note that
such a value of the mass gap corresponds to a common
order of magnitude for graphene on a substrate [25–28].
As a consequence, by choosing a value of 0.3 eV [25,26],
we do not lose any generality. Putting equation (23) into
the Pauli equation (20) leads to the following system of
coupled differential equations:

d

dt
aα = −κaβ − (1/2)Γ0aα + δ(t− ti) (24)

and
d

dt
aβ = κaα − (1/2)Γ0aβ (25)

with κ = μg |Aα −Aβ | /�. With the above mentioned val-
ues, one can roughly estimate κ ≈ 2.1 × 109 rad s−1. Γ0

is the exciton decay rate conveniently introduced in the
equations in agreement with the lifetime τ of the exciton
(Γ0 = τ−1). We assume that τ is comprised between 10 fs
and 200 ps [33,62,63] (5 × 109 s−1 ≤ Γ0 ≤ 1014 s−1).
δ(t − ti) is a Dirac delta source such that the exciton is
created at t = ti in the layer α. Then, aα(t = ti) = 1 and
aβ(t = ti) = 0. The number of excitons is then given by
Nα =

∑
i a

∗
αaα (respectively Nβ =

∑
i a

∗
βaβ) in layer α

(respectively in layer β). In the continuous limit such that
M excitons are produced per second, from equations (24)
and (25), one easily obtains three Bloch-like equations:

d

dt
Nα = −κU − Γ0Nα +M (26)

and
d

dt
Nβ = κU − Γ0Nβ (27)

and
d

dt
U = 2κNα − 2κNβ − Γ0U (28)

with U =
∑

i(a
∗
αaβ + aαa

∗
β). Since layer α is contin-

uously supplied with new excitons thanks to an inci-
dent photon flux I0, the exciton source is such that
M = ρeffI0. ρeff is the photon-to-exciton conversion ef-
ficiency. Equations (26) to (28) must present short-time
transient solutions due to −Γ0Nα(β) and −Γ0U terms. As
a consequence, we look for stationary solutions such that
dNα/dt = dNβ/dt = dU/dt = 0. Equations (26) to (28)
can be then trivially solved. The number of excitons in
each graphene layers are:

Nα =
2κ2 + Γ 2

0

Γ0 (4κ2 + Γ 2
0 )
M, and Nβ =

2κ2

Γ0 (4κ2 + Γ 2
0 )
M
(29)
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and the number of newly created excitons balances the
number of decaying excitons, i.e. M = Γ0 (Nα +Nβ).
Note that in the present approach, we do not consider any
saturation effect regarding to the number of excitons per
unit area. Then for a fixed area,Nα+Nβ should be limited
and M/Γ0 likewise. As a consequence, for a given value
ofM, the present approach is not valid when Γ0 → 0.

The photon flux It emitted from the second graphene
layer β is It = nΓ0Nβ where n is the number of photons
that results from the exciton decay. The effective optical
transmission coefficient T of the device is T = It/I0, and
one gets:

T = nρeff
2κ2

4κ2 + Γ 2
0

. (30)

The excitons transferred from layer α to layer β are then
detected through recorded photons due to excitonic decay
(see Fig. 3a). Let us consider the simplest process such
that nρeff = 1, i.e. every exciton decays into a single pho-
ton, and each photon creates a single exciton [64,65]. With
the above values, the best expected transmission T could
reach 21%, which is of course a fair value in an experi-
mental context.

7 Conclusions

Using a theoretical approach previously considered to de-
scribe a Universe made of two braneworlds [46–49], we
have proposed a new theoretical description of the phe-
nomenology of two twisted graphene sheets. The model
considers that some graphene bilayers can be described
by a two-sheeted (2+1)-spacetime in the formalism of the
noncommutative geometry. The model has been justified
by means of a tight-binding approach, and the noncom-
mutative geometry emerges from K-K ′ couplings between
graphene layers. This suggests a new way to describe
multilayer graphene, which deserves further studies. We
have shown that the transfer of excitons between the two
graphene sheets is allowed for some specific electromag-
netic conditions. While the excitons are produced by in-
cident light on the first graphene layer, photons could be
recorded in front of the second graphene layer where the
swapped exciton decays. The suggested experimental de-
vice uses magnets whose magnetic fields can be controlled
with a transient external magnetic field, allowing then to
turn on or off the device. We can then expect to get a new
kind of electro-optic light modulator with hysteresis. The
described effect is a solid-state realization of a two-brane
Universe, for which it has been shown that matter swap-
ping between two braneworlds could occur [46–49]. As a
consequence, any experimental evidence of this effect in
graphene bilayers would also be relevant in the outlook of
braneworld studies.

Appendix A: Effective two-sheeted
Hamiltonian

Let us justify equations (7) and (19), and so the non-
commutative formalism used to describe the two graphene

sheets. We consider a tight-binding approach. One defines
the operator a†α(β),j

(respectively aα(β),j ) which creates an
electron (a hole) on the site j of the sublattice “A” on the
α graphene layer (or the β graphene layer). The same con-
vention is used for the sublattice “B”. The Hamiltonian
for the bilayer can be then written as H = Hα +Hβ +Hc

with:

Hα(β) =
∑

j

(
εAa

†
α(β),j

aα(β),j + εBb
†
α(β),j

bα(β),j

)
− t
∑
〈i,j〉

(
a†α(β),ibα(β),j + b†α(β),j

aα(β),i

)
. (A.1)

Hα(β) are simply the Hamiltonian of each graphene sheet
(α) and (β). εA (respectively εB) is the energy level of the
electron in a site of the sublattice “A” (respectively “B”).
t is the energy related to nearest-neighbour hopping. 〈i, j〉
corresponds to the sum over all sites j and their nearest
neighbours i. If one considers the interlayer coupling, one
gets:

Hc = −
∑

j

tAA,j

(
a†α,jaβ,j + a†β,j

aα,j

)
−
∑

j

tBB,j

(
b†α,jbβ,j + b†β,j

bα,j

)
−
∑

j

tAB,j

(
a†α,jbβ,j + b†β,j

aα,j

)
−
∑

j

tBA,j

(
b†α,jaβ,j + a†β,j

bα,j

)
(A.2)

where the energies tuv,j (with u = A,B and v = A,B)
denote the interlayer hopping between each nearest site
of each layer. This dependence of tuv,j against the loca-
tion j is specific for a coupling between two turbostratic
graphene layers for instance. In the structure considered
here, we can see that no AA (BB) site exists by contrast
to the AB (BA) sites (see Fig. 2). We then assume that
tAA,j ≈ tBB,j ≈ 0. In addition, tAB(Rj) = tAB,j = −t′
when Rj = (2/3)(t1 + t2) + (nt1 + mt2) (with t1 =
a1+2a2 and t2 = −2a1+3a2) and tBA(Rj) = tBA,j = −t′
when Rj = (1/3)(t1 + t2) + (nt1 +mt2), with n,m ∈ N.
tAB,j and tBA,j are equal to zero elsewhere. As a conse-
quence Hc becomes:

Hc = t′
∑
[j]

(
a†α,jbβ,j + b†β,j

aα,j

)
+ t′

∑
[j]

(
b†α,jaβ,j + a†β,j

bα,j

)
, (A.3)

where [j] corresponds to the sum over all sites Rj or
Rj . We then use the following Fourier transform of the
operators:

a(b)α,j =
∑

k

1√
N
a(b)α,qk

eirj ·qk (A.4)

a(b)β,j =
∑

k

1√
N
a(b)β,q′

k
eir′j ·q′

k (A.5)
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where ri (respectively r′i) is the position vector of the site
i in the first graphene layer (α) (respectively in the second
graphene layer (β)). Then, qk (respectively q′

k) is a mo-
mentum in layer (α) (respectively (β)). N is the number
of sites. We can then write H =

∑
k Hk, and we get:

H =

(
εA

∑
k

a†α,qk
aα,qk

+ εB

∑
k

b†α,qk
bα,qk

− t
∑

k

a†α,qk
bα,qk

[
eiu1·qk + eiu2·qk + eiu3·qk

]
− t
∑

k

b†α,qk
aα,qk

[
e−iu1·qk + e−iu2·qk + e−iu3·qk

])

+

(
εA

∑
k

a†β,q′
k
aβ,q′

k
+ εB

∑
k

b†β,q′
k
bβ,q′

k

− t
∑

k

a†β,q′
k
bβ,q′

k

[
eiu′

1·q′
k + eiu′

2·q′
k + eiu′

3·q′
k

]

− t
∑

k

b†β,q′
k
aβ,q′

k

[
e−iu′

1·q′
k +e−iu′

2·q′
k +e−iu′

3·q′
k

])

+ t′
∑

k

∑
k′
a†α,qk

bβ,q′
k′

1
N

∑
[j]

eir′j ·q′
k′−irj ·qk

+ t′
∑

k

∑
k′
b†β,q′

k′
aα,qk

1
N

∑
[j]

e−ir′j ·q′
k′+irj ·qk

+ t′
∑

k

∑
k′
b†α,qk

aβ,q′
k′

1
N

∑
[j]

eir′j ·q′
k′−irj ·qk

+ t′
∑

k

∑
k′
a†β,q′

k′
bα,qk

1
N

∑
[j]

e−ir′j ·q′
k′+irj ·qk (A.6)

since ∑
〈i,j〉

ei(rj ·qk′−ri·qk) = Nδqk′ ,qk

∑
j=1,2,3

eiuj ·qk′

with

u1 = a2 − a1, u2 = a1 and u3 = −a2.

Indeed, for a site i located at ri, the three nearest neigh-
bours are located at rj = ri + u1, ri + u2 and ri + u3 re-
spectively. In the second graphene layer, the nearest neigh-
bours are defined through u′

i = R(θ)ui, with

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Let us now consider the restricted Hamiltonian H̃ which
only contains the contributions of the Hamiltonian H for

qk ≈K or K′, and q′
k ≈ Kθ or K′θ. Since:

∑
[j]

eir′j ·q′
k′−irj ·qk =

∑
j

eiRj ·(K′θ−K)

= ei(2/3)(t1+t2)·(K′θ−K)

×
∑
n,m

ei(nt1+mt2)·(K′θ−K)

= N (A.7)

and ∑
[j]

eir′j ·q′
k′−irj ·qk =

∑
j

eiRj ·(K′θ−K)

= ei(1/3)(t1+t2)·(K′θ−K)

×
∑
n,m

ei(nt1+mt2)·(K′θ−K)

= N (A.8)

we can write H̃ such that H̃ = Ψ (θ)†H(θ)Ψ (θ) with

H(θ) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εA −tΛ∗
K 0 0 0 0 0 t′

−tΛK εB 0 0 0 0 t′ 0
0 0 εA −tΛ∗

K′ 0 t′ 0 0
0 0 −tΛK′ εB t′ 0 0 0
0 0 0 t′ εA −tΛ∗

Kθ 0 0
0 0 t′ 0 −tΛKθ εB 0 0
0 t′ 0 0 0 0 εA −tΛ∗

K′θ
t′ 0 0 0 0 0 −tΛK′θ εB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.9)

where the star denotes the complex conjugate and

ΛK =
∑

i

eiui·(K+k), ΛK′ =
∑

i

eiui·(K′+k),

ΛKθ =
∑

i

eiu′
i·(Kθ+k).

and

ΛK′θ =
∑

i

eiu′
i·(K′θ+k).

k is the momentum vector which denotes low-energy ex-
citations near the Dirac points. We also define:

Ψ (θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aα,K

bα,K

aα,K′

bα,K′

aβ,Kθ

bβ,Kθ

aβ,K′θ

bβ,K′θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
χα

θα

χ
(θ)
β

θ
(θ)
β

⎞⎟⎟⎠. (A.10)
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H(θ) =⎛⎜⎜⎜⎜⎝
�vF (σ1kx + σ2ky) + mv2

fσ3 0 0 t′σ1

0 �vF (−σ1kx + σ2ky) + mv2
fσ3 t′σ1 0

0 t′σ1 �vF

(
σθ

1kx + σθ
2ky

)
+ mv2

fσ3 0

t′σ1 0 0 �vF

(−σ−θ
1 kx + σ−θ

2 ky

)
+ mv2

fσ3

⎞⎟⎟⎟⎟⎠
(A.11)

H = ⎛⎜⎜⎜⎜⎝
�vF (σ1kx + σ2ky) + mv2

fσ3 0 0 t′σ1e
−i(θ/2)σ3

0 �vF (−σ1kx + σ2ky) + mv2
fσ3 t′σ1e

i(θ/2)σ3 0

0 t′e−i(θ/2)σ3σ1 �vF (σ1kx + σ2ky) + mv2
fσ3 0

t′ei(θ/2)σ3σ1 0 0 �vF (−σ1kx + σ2ky) + mv2
fσ3

⎞⎟⎟⎟⎟⎠
(A.14)

H = ⎛⎜⎜⎜⎜⎝
�vF (σ1kx + σ2ky) + mv2

fσ3 0 0 −t′σ2e
−i(θ/2)σ3

0 �vF (σ1kx − σ2ky) + mv2
fσ3 −t′σ2e

i(θ/2)σ3 0

0 −t′e−i(θ/2)σ3σ2 �vF (σ1kx + σ2ky) + mv2
fσ3 0

−t′ei(θ/2)σ3σ2 0 0 �vF (σ1kx − σ2ky) + mv2
fσ3

⎞⎟⎟⎟⎟⎠
(A.15)

Since |k| can be assumed small enough, one gets the fol-
lowing first-order perturbation series by respect with k:

ΛK = −a0

√
3

2
{ex · k + iey · k} ,

ΛK′ = −a0

√
3

2
{−ex · k + iey · k} ,

ΛKθ = −a0

√
3

2
{R(θ)ex · k + iR(θ)ey · k} ,

and

ΛK′θ = −a0

√
3

2
{−R(θ)ex · k + iR(θ)ey · k} .

Then, we can write:

see equation (A.11) above,

where vF =
√

3at/2� is the Fermi velocity. We have set
mv2

f = (εA− εB)/2. The energy origin is defined as (εA +
εB)/2 = 0. We have defined σθ

i = ei(θ/2)σ3σie
−i(θ/2)σ3 .

Since

Ψ (θ) =

⎛⎜⎜⎜⎜⎝
χα

θα

χ
(θ)
β

θ
(θ)
β

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
χα

θα

ei(θ/2)σzχβ

e−i(θ/2)σzθβ

⎞⎟⎟⎟⎠ (A.12)

we now conveniently define H thanks to:
H̃ = Ψ (θ)†H(θ)Ψ (θ) = Ψ †HΨ , with

Ψ =

⎛⎜⎜⎝
χα

θα

χβ

θβ

⎞⎟⎟⎠ (A.13)

and we get:
see equation (A.14) above.

We now execute a convenient π/2 rotation such that
(x, y)→ (−y, x) and (kx, ky)→ (−ky, kx) leading to:

see equation (A.15) above.
Let us now rewrite the Schrödinger equation related to
the Hamiltonian (A.15) in a Dirac-like form. We use the
notations (3) such that:

γ0 =
(
σ3 0
0 σ3

)
, (A.16)

and we multiply first i�∂tΨ = HΨ on the left by γ0⊗12×2.
Using the relation:

ei(θ/2)σ3 = cos(θ/2) + iσ3 sin(θ/2), (A.17)

and the properties of the Pauli matrices, we get:
see equation (A.18) next page.
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i�

(
γ0 0
0 γ0

)
∂tΨ =

⎛⎜⎜⎝
�vF

(
iσ2kx + (−iσ1) ky

)
+ mv2

f 0 0 −t′ (−iσ1 cos(θ/2) + σ3σ1 sin(θ/2))

0 �vF

(
iσ2kx + (iσ1) ky

)
+ mv2

f −t′ (−iσ1 cos(θ/2) − σ3σ1 sin(θ/2)) 0

0 −t′ (−iσ1 cos(θ/2) − σ3σ1 sin(θ/2)) �vF

(
iσ2kx + (−iσ1) ky

)
+ mv2

f 0

−t′ (−iσ1 cos(θ/2) + σ3σ1 sin(θ/2)) 0 0 �vF

(
iσ2kx + (iσ1) ky

)
+ mv2

f

⎞⎟⎟⎠ Ψ

(A.18)

i�

(
γ0 0

0 γ0

)
∂tΨ =

(
�vF

(
γ1kx + γ2ky

)
+ mv2

f −t′
(
iγ5 cos(θ/2) − γ0γ3 sin(θ/2)

)
−t′

(
iγ5 cos(θ/2) + γ0γ3 sin(θ/2)

)
�vF

(
γ1kx + γ2ky

)
+ mv2

f

)
Ψ (A.21)

By using notations (3) and (4), such as:

γ1 =
(
iσ2 0
0 iσ2

)
, γ2 =

(
−iσ1 0

0 iσ1

)
(A.19)

and

γ3 =
(

0 −σ1

σ1 0

)
, − iγ5 =

(
0 iσ1

iσ1 0

)
, (A.20)

equation (A.18) can then be written as:
see equation (A.21) above.

Now, let us define m → mvF /� and (x0, x1, x2) =
(vF t, x, y), as well as g = (t′/vF �) cos(θ/2) and g̃ =
(t′/vF �) sin(θ/2). We also use the equivalence (k1, k2)←→
(−i∂1,−i∂2), and then equation (A.21) can be written as:(

iγη∂η −m igγ5 − γ0γ3g̃

igγ5 + γ0γ3g̃ iγη∂η −m

)
Ψ = 0 (A.22)

with η = 0, 1, 2. (A.22) is the Dirac-like form of the
Schrödinger equation related to the Hamiltonian (A.15).
If we neglect the role of the coupling g̃, or if we consider
the role of the coupling g only, obviously, equation (A.22)
is the expected equation (7) for x3 = 0.

Note that, if we consider the notations (6), i.e.:

Γμ =
(
γμ 0
0 γμ

)
and Γ 5 =

(
γ5 0
0 −γ5

)
(A.23)

it can be easily shown from the previous equations that the
coupling Hamiltonian Hc between both graphene layers
reduces to:

Hc = −i�vFΓ
0Γ 5D5 + �vFΓ

3D6 (A.24)

which is the equation (16), with:

D5 =
(

0 g

−g 0

)
(A.25)

from notations (5), and where we have defined:

D6 =
(

0 g̃

−g̃ 0

)
(A.26)

by analogy with (A.25).

The authors are grateful to Philippe Lambin, Luc Henrard and
Nicolas Reckinger for useful discussions and comments.
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64. S. Albrecht, S. Schäfer, I. Lange, S. Yilmaz, I. Dumsch,

S. Allard, U. Scherf, A. Hertwig, D. Neher, Org. Electron.
13, 615622 (2012)

65. V.I. Klimov, J. Phys. Chem. B 110, 16827 (2006)


