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Abstract. During the past 15 years, the density matrix renormalization group (DMRG) has become in-
creasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix
product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual
dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body
Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until
numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation
functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active or-
bital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual
dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG
algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the
computational cost are given special attention: the orbital choice and ordering, and the exploitation of the
symmetry group of the Hamiltonian. With these considerations, the QC-DMRG algorithm allows to find
numerically exact solutions in active spaces of up to 40 electrons in 40 orbitals.

1 Introduction

At the basis of ab initio quantum chemistry lies Hartree-
Fock (HF) theory [1–3]. In HF theory, a single Slater de-
terminant (SD) is optimized by finding the set of orbitals
which minimize its energy expectation value. The occu-
pancy of the HF orbitals is definite: occupied orbitals are
filled with probability 1, and virtual orbitals are empty
with probability 1. The exact ground state is a linear
combination over all possible Slater determinants. The
difference in energy between the HF solution and the ex-
act ground state is the correlation energy. This energy
is often (somewhat ambiguously) divided into two contri-
butions: static and dynamic correlation [4]. When near-
degeneracies between determinants occur, and more than
one determinant is needed to describe the qualitative be-
haviour of a molecule, it is said to have static correlation.
This type of correlation often arises in transition metal
complexes or π-conjugated systems, as well as for geome-
tries far from equilibrium. It is typically resolved with only
a few determinants. The Coulomb repulsion results in a
small nonzero occupancy of many virtual HF orbitals in
the true ground state. This effect is called dynamic cor-
relation, and it constitutes the remainder of the energy
gap.

All static and dynamic correlation can in principle
be retrieved at HF cost with density functional theory
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(DFT). Hohenberg and Kohn have shown that the elec-
tron density provides sufficient information to determine
all ground state properties, and that there exists a unique
universal functional of the electron density which can be
used to obtain the exact ground state density [5]. Kohn
and Sham [6] rewrote the universal functional as the
sum of the kinetic energy of a noninteracting system and
an exchange-correlation functional. This allows to repre-
sent the electron density by means of the Kohn-Sham
Slater determinant, which immediately ensures correct
N-representability. Unfortunately, the universal functional
is unknown. Many approximate semi-empirical exchange-
correlation functionals of various complexity have been
proposed. Because the exact exchange-correlation func-
tional is unknown, not all correlation is retrieved with
DFT. For single-reference systems, for which the exact
solution is dominated by a single SD, DFT is good in
capturing dynamic correlation. For multireference (MR)
systems, DFT fails to retrieve static correlation [7].

Dynamic correlation can also be captured with ab ini-
tio post-HF methods. These start from the optimized HF
orbitals and the corresponding SD, and build in dynamic
correlation on top of the single SD reference. Commonly
known are Møller-Plesset (Rayleigh-Schrödinger) pertur-
bation theory [8], the configuration interaction (CI) ex-
pansion [9,10], and coupled cluster (CC) theory [11–13].
These methods are truncated in their perturbation or ex-
pansion order. An important property of wavefunctions
is size-consistency: the fact that for two noninteracting
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subsystems, the compound wavefunction should be mul-
tiplicatively separable and the total energy additively
separable. CI with N excitations is not size-consistent if
there are more than N electrons in the compound sys-
tem, whereas CC is always size-consistent because of its
exponential wavefunction ansatz [4]. Because these post-
HF methods start from a single SD reference, they have
difficulty building in static correlation. Mostly, very large
expansion orders are required to retrieve static correlation.

It is therefore better to resort to MR methods for
systems with pronounced static correlation. For such
systems, the subset of important orbitals (the active
space), in which the occupation changes over the domi-
nant determinants, is often rather small. This allows for
a particular MR solution method: the complete active
space (CAS) self-consistent field (SCF) method [14–16].
From the HF solution, a subset of occupied and vir-
tual orbitals is selected as active space. While the re-
maining occupied and virtual orbitals are kept frozen at
HF level, the electronic structure in the active space is
solved exactly (the CAS-part). Subsequently, the occu-
pied, active, and virtual spaces are rotated to further
minimize the energy. This two-step cycle, which is some-
times implemented together, is repeated until convergence
is reached (the SCF-part). CASSCF resolves the static
correlation in the system. Dynamic correlation can be
built in on top of the CASSCF reference wavefunction
by perturbation theory (CASPT2) [17,18], a CI expan-
sion (MRCI or CASCI) [19–23], or CC theory (MRCC
or CASCC) [24,25]. For the latter, approximate schemes
such as canonical transformation (CT) theory [26] are of-
ten used.

Because the many-body Hilbert space grows exponen-
tially with the number of single-particle states, only small
active spaces, of up to 18 electrons in 18 orbitals, can
be treated in the CAS-part. In 1999, the density matrix
renormalization group (DMRG) was introduced in ab ini-
tio quantum chemistry (QC) [27]. This MR method allows
to find numerically exact solutions in significantly larger
active spaces, of up to 40 electrons in 40 orbitals.

2 Matrix product states

The electronic Hamiltonian can be written in second quan-
tization as

Ĥ = E0 +
∑

ij

tij
∑

σ

â†
iσâjσ

+
1
2

∑

ijkl

vij;kl

∑

στ

â†
iσâ†

jτ âlτ âkσ. (1)

The Latin letters denote spatial orbitals and the Greek
letters electron spin projections. The tij and vij;kl are the
one- and two-electron integrals, respectively. In the oc-
cupation number representation, the basis states of the

many-body Hilbert space are

|n1↑n1↓ . . . nL↑nL↓〉 =
(
â†
1↑
)n1↑ (

â†
1↓
)n1↓

. . .

×
(
â†

L↑
)nL↑ (

â†
L↓
)nL↓ |−〉 . (2)

The symmetry group of the Hamiltonian (1) is SU(2) ⊗
U(1) ⊗ P, or total electronic spin, particle-number,
and molecular point group symmetry. By defining the
operators

Ŝ+ =
∑

i

â†
i↑âi↓, (3)

Ŝ− =
(
Ŝ+
)†

=
∑

i

â†
i↓âi↑, (4)

Ŝz =
1
2

∑

i

(
â†

i↑âi↑ − â†
i↓âi↓

)
, (5)

N̂ =
∑

i

(
â†

i↑âi↑ + â†
i↓âi↓

)
, (6)

Ŝ2 =
Ŝ+Ŝ− + Ŝ−Ŝ+

2
+ ŜzŜz, (7)

it can be easily checked that Ĥ , Ŝ2, Ŝz, and N̂ form a set
of commuting observables. This constitutes the SU(2) to-
tal electronic spin and U(1) particle-number symmetries.
For fixed particle number N , equation (1) can also be
written as

Ĥ = E0 +
1
2

∑

ijkl

hij;kl

∑

στ

â†
iσâ†

jτ âlτ âkσ, (8)

with

hij;kl = vij;kl +
1

N − 1
(tikδj,l + tjlδi,k) . (9)

The molecular point group symmetry P consists of the ro-
tations, reflections, and inversions which leave the external
potential due to the nuclei invariant. These symmetry op-
erations map nuclei with equal charges onto each other.
The point group symmetry has implications for the spatial
orbitals. Linear combinations of the single-particle basis
functions can be constructed which transform according
to a particular row of a particular irreducible represen-
tation (irrep) of P [28]. As the Hamiltonian transforms
according to the trivial irrep I0 of P, hij;kl can only be
nonzero if the reductions of Ii⊗Ij and Ik⊗Il have at least
one irrep in common. Most molecular electronic structure
programs make use of the Abelian point groups with real-
valued character tables.

An eigenstate of the Hamiltonian (8) can be written as

|Ψ〉 =
∑

{njσ}
Cn1↑n1↓n2↑n2↓...nL↑nL↓

× |n1↑n1↓n2↑n2↓ . . . nL↑nL↓〉 . (10)

The size of the full CI (FCI) tensor grows as 4L, exponen-
tially fast with L. This tensor can be exactly decomposed
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Fig. 1. Tensors are represented by circles, physical indices by
open lines, and virtual indices by connected lines. The MPS
graph hence represents how the contracted matrix product de-
composes the FCI tensor.

by a singular value decomposition (SVD) as follows:

Cn1↑n1↓n2↑n2↓...nL↑nL↓ = C(n1↑n1↓);(n2↑n2↓...nL↑nL↓)

=
∑

α1

U [1](n1↑n1↓);α1s[1]α1

× V [1]α1;(n2↑n2↓...nL↑nL↓). (11)

Define
A[1]n1↑n1↓

α1 = U [1](n1↑n1↓);α1s[1]α1 , (12)

and decompose the right unitary V [1] again with an SVD
as follows:

V [1]α1;(n2↑n2↓n3↑n3↓...nL↑nL↓)

= V [1](α1n2↑n2↓);(n3↑n3↓...nL↑nL↓)

=
∑

α2

U [2](α1n2↑n2↓);α2s[2]α2V [2]α2;(n3↑n3↓...nL↑nL↓).

(13)

Define

A[2]n2↑n2↓
α1;α2 = U [2](α1n2↑n2↓);α2s[2]α2 . (14)

Continue by successively decomposing the right unitaries
V [k]. In this way, the FCI tensor can be exactly rewritten
as the following contracted matrix product:

Cn1↑n1↓n2↑n2↓n3↑n3↓...nL↑nL↓ =
∑

{αk}
A[1]n1↑n1↓

α1 A[2]n2↑n2↓
α1;α2

× A[3]n3↑n3↓
α2;α3 . . . A[L]nL↑nL↓

αL−1 ,
(15)

which is graphically represented in Figure 1. Except for
the first and last orbital (or site), equation (15) introduces
a rank-3 tensor per site. One of its indices corresponds to
the physical index ni↑ni↓, the other two to the virtual or
bond indices αi−1 and αi. In Figure 1, tensors are rep-
resented by circles, physical indices by open lines, and
virtual indices by connected lines. The graph hence repre-
sents how the contracted matrix product decomposes the
FCI tensor. Since no assumptions are made about the FCI
tensor, the dimension of the indices {αk} has to grow ex-
ponentially towards the middle of this contracted product:

dim (αj) = min
(
4j, 4L−j

)
. (16)

This is solely due to the increasing matrix dimensions in
the successive SVDs. Instead of variationally optimizing
over the FCI tensor, one may as well optimize over the
tensors of its decomposition (15). To make equation (15)
of practical use, its dimensions can be truncated:

dim (αj) = min
(
4j , 4L−j, D

)
. (17)

The corresponding ansatz is called a matrix product state
(MPS) with open boundary conditions. The truncation
dimension D is called the bond or virtual dimension.
The MPS ansatz can be optimized by the DMRG algo-
rithm [27,29,30], yielding a variational upper bound for
the ground state energy.

DMRG was invented in 1992 by White in the field
of condensed matter theory [29]. Östlund and Rommer
discovered in 1995 its underlying variational ansatz, the
MPS [31,32]. The discovery of the MPS ansatz allowed to
understand DMRG by means of quantum information the-
ory. The area law for one-dimensional quantum systems
(see Sect. 3), was proven by Hastings in 2007 [33], and con-
stitutes a hard proof that an MPS is very efficient in rep-
resenting the ground state of noncritical one-dimensional
quantum systems.

The MPS ansatz was in fact discovered earlier, un-
der various names. Nishino found that they were used
in statistical physics as a variational optimization tech-
nique [34]: in 1941 by Kramers and Wannier [35] and
in 1968 by Baxter [36]. Nightingale and Blöte recycled
Baxter’s ansatz in 1986 to approximate quantum eigen-
states [37]. In 1987, Affleck et al. constructed the exact
valence-bond ground state of a particular next-nearest-
neighbour spin chain [38]. They obtained an MPS with
bond dimension 2. In mathematics, the translationally in-
variant valence-bond state is known as a finitely correlated
state [39,40], and in the context of information compres-
sion, an MPS is known as a tensor train [41,42].

The concept of a renormalization group was first used
in quantum electrodynamics. The coarse-grained view
of a point-like electron breaks down at small distance
scales (or large energy scales). The electron itself con-
sists of electrons, positrons, and photons. The mass and
charge contributions from this fine structure lead to infini-
ties. These were successfully resolved by Tomonaga [43],
Schwinger [44,45], and Feynman [46,47]. Later, Wilson
used a numerical renormalization group (NRG) to solve
the long-standing Kondo problem [48]. He turned the
coupling of the impurity to the conduction band into a
half-infinite lattice problem by discretizing the conduction
band in momentum space. For increasing lattice sizes, only
the lowest energy states are kept at each renormalization
step. These are sufficient to study the low-temperature
thermodynamics of the impurity system. Although very
successful for impurity systems, NRG fails for real-space
lattice systems such as the discretized particle-in-a-box,
spin-lattice, and Hubbard models. For these systems, the
low energy states of a small subsystem are often irrelevant
for the ground state of the total system [49]. Consider for
example the ground state of the particle-in-a-box problem.
By concatenating the solution of two smaller sized boxes,
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Fig. 2. Bipartition of the L single-particle states.

an unphysical node is introduced in the approximation of
the ground state of the larger problem. It was White who
pointed out this problem and resolved it with his DMRG
method [29]. Instead of selecting the degrees of freedom
with lowest energy, the most relevant degrees of freedom
should be selected.

3 Entanglement and the von Neumann
entropy

This section attempts to clarify the broader context of
DMRG. A brief introduction to quantum entanglement,
the von Neumann entropy, and the area law is given.

Consider the bipartition of L orthonormal single-
particle states into two subsystems A and B in Figure 2.
Suppose {|Ai〉} and {|Bj〉} are the orthonormal basis
states of the many-body Hilbert spaces of resp. subsys-
tem A and B. The Hilbert space of the composite system
is spanned by the product space {|Ai〉} ⊗ {|Bj〉}, and a
general quantum many-body state |Ψ〉 of the composite
system can be written as

|Ψ〉 =
∑

ij

Cij |Ai〉 |Bj〉 . (18)

The Schmidt decomposition of |Ψ〉 is obtained by perform-
ing an SVD on Cij and by rotating the orthonormal bases
{|Ai〉} and {|Bj〉} with the unitary matrices:

|Ψ〉 =
∑

ij

Cij |Ai〉 |Bj〉 =
∑

ijk

UikσkVkj |Ai〉 |Bj〉

=
∑

k

σk

∣∣∣Ãk

〉 ∣∣∣B̃k

〉
. (19)

For normalized |Ψ〉:

〈Ψ | Ψ〉 =
∑

k

σ2
k = 1. (20)

For the given bipartition, one is sometimes interested in
the optimal approximation |Ψ̃〉 of |Ψ〉 in a least squares
sense ‖ |Ψ̃〉 − |Ψ〉 ‖2. It can be shown that the optimal ap-
proximation, with a smaller number of terms in the sum-
mation (18), is obtained by keeping the states with the
largest Schmidt numbers σk in equation (19). This fact
will be of key importance for the DMRG algorithm (see
Sect. 4.3).

In classical theories, the sum over k can contain only
one nonzero value σk. A measurement in subsystem A
then does not influence the outcome in subsystem B, and
the two subsystems are not entangled. In quantum theo-
ries, the sum over k can contain many nonzero values σk.

State |Ãk〉 in subsytem A occurs with probability σ2
k, as

can be observed from the reduced density matrix (RDM)
of subsystem A:

ρ̂A = TrB |Ψ〉 〈Ψ | =
∑

j

〈Bj | Ψ〉 〈Ψ | Bj〉

=
∑

ijl

|Ai〉CijC
†
jl 〈Al| =

∑

k

∣∣∣Ãk

〉
σ2

k 〈Ãk| . (21)

Analogously the RDM of subsystem B can be constructed:

ρ̂B =
∑

k

∣∣∣B̃k

〉
σ2

k

〈
B̃k

∣∣∣ . (22)

From (19), it follows that the measurement of |Ãk〉 in sub-
system A implies the measurement of |B̃k〉 in subsystem
B with probability 1. Measurements in A and B are hence
not independent, and the two subsystems are said to be
entangled.

Consider for example two singly occupied orbitals A
and B in the spin-0 singlet state:

|Ψ〉 =
|↑A↓B〉 − |↓A↑B〉√

2
. (23)

The measurements of the spin projections of the electrons
are not independent. Each possible spin projection of the
electron in A can be measured with probability 1

2 , but the
simultaneous measurement of both spin projections will
always yield

〈Ψ | Ŝz
AŜz

B | Ψ〉 = −1
4

(24)

with probability 1.
The RDMs ρ̂A and ρ̂B allow to define the von

Neumann entanglement entropy [50]:

SA|B = −TrA ρ̂A ln ρ̂A = −TrB ρ̂B ln ρ̂B

= −
∑

k

σ2
k ln σ2

k. (25)

This quantum analogue of the Shannon entropy is a mea-
sure of how entangled subsystems A and B are. If they are
not entangled, σ1 = 1 and σk = 0 for k ≥ 2, which implies
SA|B = 0. If they are maximally entangled, σk = σl for all
k and l, which implies SA|B = ln(Z), with Z the minimum
of the sizes of the many-body Hilbert spaces of A and B.

A Hamiltonian which acts on a K-dimensional quan-
tum lattice system in the thermodynamic limit is called
local if there exists a distance cutoff beyond which the in-
teraction terms decay at least exponentially. Consider the
ground state |Ψ0〉 of a gapped K-dimensional quantum
system in the thermodynamic limit, and select as subsys-
tem a hypercube with side L and volume LK . The von
Neumann entropy is believed to obey an area law [51–53]:

Shypercube ∝ LK−1. (26)

This is the result of a finite correlation length, as only
lattice sites in the immediate vicinity of the hypercube’s
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Fig. 3. Several tensor network states. Tensors are represented
by circles, physical indices by open lines, and virtual indices
by connected lines. The graph hence represents how the ansatz
decomposes the FCI tensor.

boundary are then correlated with lattice sites on the
other side of the boundary. This is a theorem for one-
dimensional systems [33] and a conjecture in higher di-
mensions [52], supported by numerical examples and theo-
retical arguments [53]. For critical quantum systems, with
a closed excitation gap, there can be logarithmic correc-
tions to the area law [52,54].

For gapped one-dimensional systems, consider as sub-
system a line segment of length L. Its boundary consists
of two points. Due to the finite correlation length in the
ground state, the entanglement of the subsystem does not
increase with L, if L is significantly larger than the correla-
tion length. The von Neumann entropy is then a constant
independent of L, and the ground state |Ψ0〉 can be well
represented by retaining only a finite number of states D
in the Schmidt decomposition of any bipartition of the lat-
tice in two semi-infinite line segments. This is the reason
why the MPS ansatz and the corresponding DMRG algo-
rithm work very well to study the ground states of gapped
one-dimensional systems.

The MPS ansatz

|Ψ〉 =
∑

{njσ}{αk}
A[1]n1↑n1↓

α1 A[2]n2↑n2↓
α1;α2 . . . A[L]nL↑nL↓

αL−1

× |n1↑n1↓n2↑n2↓ . . . nL↑nL↓〉 , (27)

is shown graphically in Figure 3. Except for the first and
last orbital (or site), the MPS ansatz introduces a rank-3
tensor per site. One of its indices corresponds to the phys-
ical index ni↑ni↓, the other two to the virtual indices αi−1

and αi. Similar to Figure 1, tensors are represented by cir-
cles, physical indices by open lines, and virtual indices by
connected lines in Figure 3. The graph hence represents
how the ansatz decomposes the FCI tensor. The finite size

D of the virtual indices can capture finite-length correla-
tions along the one-dimensional chain. Stated more rigor-
ously: for a system in the thermodynamic limit, all cor-
relation functions CMPS(Δx) measured in an MPS ansatz
with finite D decay exponentially with increasing site dis-
tance Δx [40,55]:

CMPS(Δx) ∝ e−αΔx. (28)

Unless the lattice size is reasonably small [56], an MPS
is not efficient to represent the ground state of higher di-
mensional or critical systems. Fortunately, efficient tensor
network states (TNS) for higher dimensional and critical
lattice systems, which do obey the correct entanglement
scaling laws, have been developed [55]. There even exists a
continuous MPS ansatz for one-dimensional quantum field
theories [57].

The ansatz for two-dimensional systems is called the
projected entangled pair state (PEPS) [58] (see Fig. 3). In-
stead of two virtual indices, each tensor now has four vir-
tual indices, which allows to arrange the sites in a square
lattice. A finite virtual dimension D still introduces a fi-
nite correlation length, but due to the topology of the
PEPS, this is sufficient for two-dimensional systems, even
in the thermodynamic limit. Analogous extensions exist
for other lattice topologies.

The ansatz for critical one-dimensional systems
is called the multi-scale entanglement renormalization
ansatz (MERA) [59] (see Fig. 3). This ansatz has two
axes: x along the physical one-dimensional lattice and z
along the renormalization direction. Consider two sites
separated by Δx along x. The number of virtual bonds
between those sites is only of order Δz ∝ ln Δx. With fi-
nite D, all correlation functions CMERA(Δx) measured in
a MERA decay exponentially with increasing renormal-
ization distance Δz:

CMERA(Δx) ∝ e−αΔz ∝ e−β ln Δx = (Δx)−β , (29)

and therefore only algebraically with increasing lattice dis-
tance Δx [55,59].

An inconvenient property of the PEPS, MERA, and
MPS with periodic boundary conditions [60], is the intro-
duction of loops in the network. This results in the inabil-
ity to exploit the TNS gauge invariance to work with or-
thonormal renormalized environment states (see Sects. 4.2
and 4.3). One particular network which avoids such loops,
but which is still able to capture polynomially decaying
correlation functions, is the tree TNS (TTNS) [61,62] (see
Fig. 3). From a central tensor with z virtual bonds, Y con-
secutive onion-like layers are built of tensors with also z
virtual bonds. The last layer consists of tensors with only
1 virtual bond. An MPS is hence a TTNS with z = 2. The
number of sites L increases as [63,64]:

L = 1 + z

Y∑

k=1

(z − 1)k−1 =
z(z − 1)Y − 2

z − 2
. (30)

Hence Y ∝ ln(L) for z ≥ 3. The maximum number of
virtual bonds between any two sites is 2Y . The correlation
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functions in a TTNS with finite D and z ≥ 3 decrease
exponentially with increasing separation Y :

CTTNS(L) ∝ e−αY ∝ e−β ln L = L−β, (31)

and therefore only algebraically with increasing number
of sites L [61,62].

For higher-dimensional or critical systems, DMRG can
still be useful [56]. The virtual dimension D then has
to be increased to a rather large size to obtain numeri-
cal convergence. In the case of multiple dimensions, the
question arises if one should work in real or momentum
space, and how the corresponding single-particle degrees
of freedom should be mapped to the one-dimensional lat-
tice [65]. Ab initio quantum chemistry can be considered
as a higher-dimensional system, due to the full-rank two-
body interaction in the Hamiltonian (8), and the often
compact spatial extent of molecules. Nevertheless, DMRG
turned out to be very useful for ab initio quantum chem-
istry (QC-DMRG) [27,63,64,66–135].

An excellent description of QC-DMRG in terms of
renormalization transformations is given in Chan and
Head-Gordon [68]. Section 4 contains a description in
terms of the underlying MPS ansatz, because this ap-
proach will be used in Section 9 to introduce SU(2) ⊗
U(1) ⊗ P symmetry in the DMRG algorithm. The prop-
erties of the DMRG algorithm are discussed in Section 5.
Several convergence strategies are listed in Section 6. An
overview of the strategies to choose and order orbitals is
given in Section 7. A converged DMRG calculation can be
the starting point of other methods. These methods are
summarized in Section 8. Section 10 gives an overview of
the currently existing QC-DMRG codes, and the systems
which have been studied with them.

4 The QC-DMRG algorithm

4.1 The MPS ansatz

DMRG can be formulated as the variational optimization
of an MPS ansatz [31,32]. The MPS ansatz (27) has open
boundary conditions, because sites 1 and L only have one
virtual index. The sites are assumed to be orbitals, which
have 4 possible occupancies |−〉, |↑〉, |↓〉, and |↑↓〉. Hence-
forth |ni〉 will be used as a shorthand for |ni↑ni↓〉. To be
of practical use, the virtual dimensions αj are truncated
to D: dim(αj) = min(4j , 4L−j, D). With increasing D, the
MPS ansatz spans a larger region of the full Hilbert space,
but it is of course not useful to make D larger than 4�

L
2 �

as the MPS ansatz then spans the whole Hilbert space.
A Slater determinant has gauge freedom: a rotation

in the occupied orbital space alone, or a rotation in the
virtual orbital space alone, does not change the physical
wavefunction. Only occupied-virtual rotations change the
wavefunction. An MPS has gauge freedom as well. If for
two neighbouring sites i and i + 1, the left MPS tensors
are right-multiplied with the non-singular matrix G:

Ã[i]ni
αi−1;αi

=
∑

βi

A[i]ni

αi−1;βi
Gβi;αi , (32)

and the right MPS tensors are left-multiplied with the
inverse of G:

Ã[i + 1]ni+1
αi;αi+1

=
∑

βi

G−1
αi;βi

A[i + 1]ni+1
βi;αi+1

, (33)

the wavefunction does not change, i.e. ∀ni, ni+1, αi−1,
αi+1:
∑

αi

Ã[i]ni
αi−1;αi

Ã[i+1]ni+1
αi;αi+1

=
∑

αi

A[i]ni
αi−1;αi

A[i+1]ni+1
αi;αi+1

.

(34)

4.2 Canonical forms

The two-site DMRG algorithm consists of consecutive
sweeps or macro-iterations, where at each sweep step the
MPS tensors of two neighbouring sites are optimized in
the micro-iteration. Suppose these sites are i and i + 1.
The gauge freedom of the MPS is used to bring it in a
particular canonical form. For all sites to the left of i, the
MPS tensors are left-normalized:

∑

αk−1,nk

(A[k]nk)†αk;αk−1
A[k]nk

αk−1;βk
= δαk,βk

, (35)

and for all sites to the right of i + 1, the MPS tensors are
right-normalized:

∑

αk,nk

A[k]nk
αk−1;αk

(A[k]nk)†αk;βk−1
= δαk−1,βk−1 . (36)

Left-normalization can be performed with consecutive
QR-decompositions:

A[k]nk
αk−1;αk

= A[k](αk−1nk);αk

=
∑

βk

Q[k](αk−1nk);βk
Rβk;αk

=
∑

βk

Q[k]nk

αk−1;βk
Rβk;αk

. (37)

The MPS tensor Q[k] is now left-normalized. The
R-matrix is multiplied into A[k+1]. From site 1 to i−1, the
MPS tensors are left-normalized this way, without chang-
ing the wavefunction. Right-normalization occurs analo-
gously with LQ-decompositions. In Section 4.4, it will be-
come clear that this normalization procedure only needs
to occur at the start of the DMRG algorithm.

At this point, it is instructive to make the analogy
to the renormalization group formulation of the DMRG
algorithm. Define the following vectors:
∣∣αL

i−1

〉
=

∑

{nj}{α1...αi−2}
A[1]n1

α1
. . . A[i − 1]ni−1

αi−2;αi−1

× |n1 . . . ni−1〉 , (38)
∣∣αR

i+1

〉
=

∑

{nj}{αi+2...αL−1}
A[i + 2]ni+2

αi+1;αi+2
. . . A[L]nL

αL−1

× |ni+2 . . . nL〉 . (39)
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Due to the left- and right-normalization described above,
these vectors are orthonormal:

〈
αL

i−1 | βL
i−1

〉
= δαi−1,βi−1 , (40)

〈
αR

i+1 | βR
i+1

〉
= δαi+1,βi+1 . (41)

{∣∣αL
i−1

〉} and {∣∣αR
i+1

〉} are renormalized bases of the
many-body Hilbert spaces spanned by resp. orbitals 1 to
i − 1 and orbitals i + 2 to L. Consider for example the
left side. For site k from 1 to i − 2, the many-body basis
is augmented by one orbital and subsequently truncated
again to at most D renormalized basis states:

{∣∣αL
k−1

〉} ⊗ {|nk〉} →
∣∣αL

k

〉
=

∑

αk−1,nk

A[k]nk
αk−1;αk

∣∣αL
k−1

〉 |nk〉 . (42)

DMRG is hence a renormalization group for increasing
many-body Hilbert spaces. The next section addresses
how this renormalization transformation is chosen.

4.3 Micro-iterations

Combine the MPS tensors of the two sites under consid-
eration into a single two-site tensor:

∑

αi

A[i]ni
αi−1;αi

A[i + 1]ni+1
αi;αi+1

= B[i]ni;ni+1
αi−1;αi+1

. (43)

At the current micro-iteration of the DMRG algorithm,
B[i] (the flattened column form of the tensor B[i]) is
used as an initial guess for the effective Hamiltonian
equation. This equation is obtained by variation of the
Lagrangian [91]

L = 〈Ψ(B[i]) | Ĥ | Ψ(B[i])〉 −Ei 〈Ψ(B[i]) | Ψ(B[i])〉 (44)

with respect to the complex conjugate of B[i]:

H[i]effB[i] = EiB[i]. (45)

The canonical form in equations (35) and (36) en-
sured that no overlap matrix is present in this effective
Hamiltonian equation. In the DMRG language, this equa-
tion can be interpreted as the approximate diagonaliza-
tion of the exact Hamiltonian Ĥ in the orthonormal ba-
sis {∣∣αL

i−1

〉} ⊗ {|ni〉} ⊗ {|ni+1〉} ⊗ {∣∣αR
i+1

〉} (see Fig. 4).
Because of the underlying MPS ansatz, DMRG is varia-
tional: Ei is always an upper bound to the energy of the
true ground state.

The lowest eigenvalue and corresponding eigenvector
of the effective Hamiltonian are searched with iterative
sparse eigensolvers. Typical choices are the Lanczos or
Davidson algorithms [136,137]. Once B[i] is found, it is
decomposed with an SVD:

B[i](αi−1ni);(ni+1αi+1) =
∑

βi

U [i](αi−1ni);βi
κ[i]βi

× V [i]βi;(ni+1αi+1). (46)

Fig. 4. Optimization of the MPS tensors at sites i and i+1 in
the two-site DMRG algorithm. The effective Hamiltonian equa-
tion (45), obtained by variation of the Lagrangian (44), can be
interpreted as the approximate diagonalization of the exact
Hamiltonian Ĥ in the orthonormal basis {∣∣αL

i−1

〉} ⊗ {|ni〉} ⊗
{|ni+1〉} ⊗ {∣∣αR

i+1

〉}.

Note that U [i] is hence left-normalized and V [i] right-
normalized. The sum over βi is truncated if there are more
than D nonzero Schmidt values κ[i]βi, thereby keeping the
D largest ones. This is the optimal approximation for the
bipartition of {∣∣αL

i−1

〉}⊗{|ni〉}⊗{|ni+1〉}⊗{∣∣αR
i+1

〉} into
A = {∣∣αL

i−1

〉}⊗{|ni〉} and B = {|ni+1〉}⊗
∣∣αR

i+1

〉}. In the
original DMRG algorithm, U [i] and V [i] were obtained as
the eigenvectors of resp. ρ̂A and ρ̂B .

A discarded weight can be associated with the trunca-
tion of the sum over βi:

w[i]disc
D =

∑

βi>D

κ[i]2βi
. (47)

This is the probability to measure one of the discarded
states in the subsystems A or B. The approximation intro-
duced by the truncation becomes better with increasingly
small discarded weight. Instead of working with a fixed
D, one could also choose D dynamically in order to keep
w[i]disc

D below a preset threshold, as is done in Legeza’s
dynamic block state selection approach [69].

4.4 Macro-iterations or sweeps

So far, we have looked at a micro-iteration of the DMRG
algorithm. This micro-iteration happens during left or
right sweeps. During a left sweep, B[i] is constructed,
the corresponding effective Hamiltonian equation solved,
the solution B[i] decomposed, the Schmidt spectrum trun-
cated, κ[i] is contracted into U [i], A[i] is set to this con-
traction U [i]×κ[i], A[i+1] is set to V [i], and i is decreased
by 1. Note that A[i + 1] is right-normalized for the next
micro-iteration as required. This stepping to the left oc-
curs until i = 1, and then the sweep direction is reversed
from left to right. Based on energy differences, or wave-
function overlaps, between consecutive sweeps, a conver-
gence criterium is triggered, and the sweeping stops.

DMRG can be regarded as a self-consistent field
method: at convergence the neighbours of an MPS
tensor generate the field which yields the local solu-
tion, and this local solution generates the field for its
neighbours [68,81,91].

4.5 Renormalized operators and their complements

The effective Hamiltonian in equation (45) is too large
to be fully constructed as a matrix. Only its action on a
particular guess B[i] is available as a function. In order to
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construct H[i]effB[i] efficiently for general quantum chem-
istry Hamiltonians, several tricks are used. Suppose that
a right sweep is performed and that the MPS tensors of
sites i and i + 1 are about to be optimized.

Renormalized operators such as 〈αL
i−1 | â†

kσâlτ | βL
i−1〉

with k, l ≤ i − 1 are constructed and stored on
disk [27,68,94]. The renormalized operators needed for the
previous micro-iteration can be recycled to this end. Sup-
pose k, l ≤ i − 2:

〈αL
i−1 | â†

kσ âlτ | βL
i−1〉 =

∑

αi−2,βi−2,ni−1

(A[i−1]ni−1)†αi−1;αi−2

× 〈αL
i−2 | â†

kσâlτ | βL
i−2〉

× A[i − 1]ni−1
βi−2;βi−1

. (48)

Note that no phases appear because an even num-
ber of second-quantized operators was transformed. For
an odd number, there should be an additional phase
(−1)n(i−1)↑+n(i−1)↓ at the right-hand side (RHS) due to the
Jordan-Wigner transformation [138]. Renormalized oper-
ators to the right of B[i] can be loaded from disk, as they
have been saved during the previous left sweep.

Once three second-quantized operators are on one
side of B[i], they are multiplied with the matrix ele-
ments hkl;mn, and a summation is performed over the
common indices to construct complementary renormalized
operators [27,65,68,94]:

〈αL
i−1 | Q̂nτ | βL

i−1〉 =
∑

σ

∑

k,l,m<i

hkl;mn

× 〈αL
i−1

∣∣ â†
kσâ†

lτ âmσ

∣∣βL
i−1

〉
. (49)

For two, three, and four second-quantized operators on
one side of B[i], these complementary renormalized opera-
tors are constructed. A bare renormalized operator (with-
out matrix elements) is only constructed for one or two
second-quantized operators.

Hermitian conjugation and commutation relations:

〈αL
i−1 | â†

kσâ†
lτ | βL

i−1〉 = 〈βL
i−1 | âlτ âkσ | αL

i−1〉
†

= −〈αL
i−1 | â†

lτ â†
kσ | βL

i−1〉 , (50)

are also used to further limit the storage requirements for
the (complementary) renormalized operators. Examples of
renormalized operators and the fermion sign handling can
be found in, for example references [107,139].

4.6 Computational cost

This section describes the cost of the QC-DMRG algo-
rithm per sweep in terms of memory, disk, and compu-
tational time [27,68,94]. To analyze this cost, let us first
look at the cost per micro-iteration. A micro-iteration con-
sists of three steps: solving the effective Hamiltonian equa-
tion (45), performing an SVD of the solution (46), and
constructing the (complementary) renormalized operators
for the next micro-iteration.

To solve the effective Hamiltonian equation with the
Lanczos or Davidson algorithms, a set of Nvec trial vec-
tors {B[i]} are kept in memory, as well as H[i]eff{B[i]}.
To construct H[i]eff{B[i]}, (complementary) renormalized
operators should also be stored in memory. The latter have
at most two site indices. The total memory cost is hence
O((Nvec + L2)D2).

The action of H[i]eff on B[i] is divided into several con-
tributions. Each contribution consists of the joint action
of a renormalized operator and the corresponding com-
plementary renormalized operator. For each contribution,
two matrix-matrix multiplications need to be performed,
of computational cost O(D3). In total there are O(L2)
contributions, because complementary renormalized op-
erators have at most two site indices. The total compu-
tational cost is hence O(NvecL

2D3) for the multiplica-
tions, and O(NvecL

2D2) for the summation of the different
contributions.

The SVD of the solution B[i] takes O(D3) computa-
tional time and O(D2) memory.

The construction of one particular renormalized opera-
tor takes O(D3) computational time and O(D2) memory,
and there are O(L2) such operators. The most tedious
part to analyze is the construction of the two-site comple-
mentary renormalized operators, e.g.

〈αL
i−1 | F̂mσ;nτ | βL

i−1〉=
∑

k,l<i

hkl;mn 〈αL
i−1 | â†

kσâ†
lτ | βL

i−1〉,

(51)
which takes at first sight O(L2D2) computational time
and O(D2) memory per operator. There are O(L2) such
operators, and a naive implementation would hence result
in a computational cost of O(L4D2) per micro-iteration.
However, this summation needs to be performed only once
for each operator, at the moment when the second second-
quantized operator is added:

〈αL
i−1 | F̂mσ;nτ | βL

i−1〉 =
∑

k<i

hk(i−1);mn

× 〈αL
i−1 | â†

kσâ†
(i−1)τ | βL

i−1〉 .

(52)

From then on, this operator can be transformed as in
equation (48). The total computational cost per micro-
iteration is hence reduced to O(L3D2) for the summa-
tion (there are three variable site indices in Eq. (52)),
and O(L2D3) for the transformation (there are O(L2) op-
erators to be transformed). The one-site complementary
renormalized operator (the complement of three second-
quantized operators) can be constructed from the two-
site complementary renormalized operators at the mo-
ment when the third second-quantized operator is added.
From then on, this operator can also be transformed as in
equation (48).

As mentioned earlier, the (complementary) renormal-
ized operators are stored to disk, as well as the MPS site
tensors, in order to be recycled when the sweep direction
is reversed. An overview of the resulting total cost per
macro-iteration is given in Table 1. For a given virtual
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Table 1. Computational requirements per macro-iteration or sweep of the QC-DMRG algorithm.

O(task) Time Memory Disk

H[i]eff{B[i]}(a) NvecL
3D3 NvecD

2 −
SVD and basis truncation LD3 D2 LD2

Renormalized operators L3D3 L2D2 L3D2

Complementary renormalized operators L4D2 + L3D3 L2D2 L3D2

Total L4D2 + NvecL
3D3 (Nvec + L2)D2 L3D2

(a) The memory for the (complementary) renormalized operators is mentioned separately.

dimension D, the DMRG algorithm is of polynomial cost
in L. The computational requirements in Table 1 are up-
per bounds if the symmetry group of the Hamiltonian is
exploited (see Sect. 9). Then the MPS tensors and cor-
responding (complementary) renormalized operators be-
come block-sparse, and hkl;mn is not full rank. An example
of the scaling of the computational time per DMRG sweep
with the number of orbitals L is shown in Figure 5. Due to
the imposed SU(2)⊗U(1)⊗Cs symmetry, CheMPS2 [121]
achieves a scaling below O(L4).

5 Properties

5.1 DMRG is variational

The DMRG algorithm is variational, because it can be
formulated as the optimization of an MPS ansatz. All en-
ergies obtained during all micro-iterations are therefore
upper bounds to the true ground state energy. These en-
ergies do not go down monotonically however, because the
basis {∣∣αL

i−1

〉} ⊗ {|ni〉} ⊗ {|ni+1〉} ⊗ {∣∣αR
i+1

〉} in which Ĥ
is diagonalized changes between different micro-iterations
due to the truncation of the Schmidt spectrum [68].

5.2 Energy extrapolation

With increasing virtual dimension D, the MPS ansatz
spans an increasing part of the many-body Hilbert space.
In the following, ED denotes the minimum energy encoun-
tered in equation (45) during the micro-iterations for a
given virtual dimension D. Several calculations with in-
creasing D can be performed, in order to assess the con-
vergence. This even allows to make an extrapolation of
the energy to the FCI limit. Several extrapolation schemes
have been suggested. Note that EFCI and {Ci, pj, qk} be-
low are parameters to be fitted. The maximum discarded
weight encountered during the last sweep before conver-
gence is abbreviated as:

wdisc
D = max

i

{
w[i]disc

D

}
. (53)

The initial assumption of exponential convergence [27]

ln (ED − EFCI) ∝ C1 + C2D (54)

was rapidly abandoned for the relation [68,69,141]

ED − EFCI = C3w
disc
D , (55)

Fig. 5. The geometries of all-trans polyenes CnHn+2 were
optimized at the B3LYP/6-31G** level of theory for n = 12,
14, 16, 18, 20, 22 and 24. The σ-orbitals were kept frozen at
the RHF/6-31G level of theory. The π-orbitals in the 6-31G
basis were localized by means of the Edmiston-Ruedenberg lo-
calization procedure [140], which maximizes

∑
i vii;ii. The lo-

calized π-orbitals belong to the A′′ irrep of the Cs point group,
and were ordered according to the one-dimensional topology
of the polyene. For all polyenes, the average CPU time per
DMRG sweep was determined with CheMPS2 [121], for two
reduced virtual dimensions D. For the values of D shown here,
the energies are converged to μEh accuracy due to the one-
dimensional topology of the localized and ordered π-orbitals.
Due to the imposed SU(2) ⊗ U(1) ⊗ Cs symmetry, all tensors
become block-sparse, see Section 9, which causes the scaling to
be below O(L4).

because the energy is a linear function of the RDM [68]. An
example of an extrapolation with equation (55) is shown in
Figure 6. The tail of the distribution of RDM eigenvalues
scales as [68,142]

κ[i]2βi
∝ exp

{
−C4 (ln βi)

2
}

. (56)

Substituting this relation in equation (55) yields an im-
proved version of equation (54) [68]:

ln (ED − EFCI) ∝ C5 − C4 (ln D)2 . (57)

An example of an extrapolation with equation (57) is
shown in Figure 10. Equations (55) and (57) are the most
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Fig. 6. Extrapolation of the variational DMRG ground-
state energy ED with the discarded weight wdisc

D , for N2 in
the cc-pVDZ basis near equilibrium (nuclear separation 2.118
a.u.). The calculation was performed with CheMPS2 [121]
with SU(2) ⊗ U(1) ⊗ D2h symmetry (see Sect. 9). D denotes
the number of reduced virtual basis states. The irrep ordering
in the DMRG calculation was [AgB1uB3uB2gB2uB3gB1gAu] in
order to place bonding and antibonding orbitals close to each
other on the one-dimensional DMRG lattice (see Sect. 7.3 and
Fig. 8).

widely used extrapolation schemes in QC-DMRG. Three
other relations have been proposed as well. A relation
for incremental energies ΔED1 = ED1 − ED0 has been
suggested [72]:

ΔED =
C6 + C7ED√

L3D2 + 2L2D3
, (58)

but the extrapolated EFCI often violates the variational
principle. An alternative relation based on the discarded
weight has also been proposed [72]:

ln (ED − EFCI) = C8 − C9

(
wdisc

D

)− 1
2 , (59)

as well as a Richardson-type extrapolation scheme, based
on the assumption that the energy is an analytic function
of wdisc

D [97]:

E(μν)
(
wdisc

D

)
=

p0 + p1w
disc
D + . . . + pμ

(
wdisc

D

)μ

q0 + q1wdisc
D + . . . + qν

(
wdisc

D

)ν . (60)

5.3 The CI content of the wavefunction

To analyze the MPS wavefunction (27), suppose that the
L orthonormal orbitals are the HF orbitals. An important
difference with traditional post-HF methods such as CI
expansions, is that no FCI coefficients are a priori zero.
An MPS hence captures CI coefficients of any particle-
excitation rank relative to HF [75,81]. A small virtual
dimension implies little information content in the FCI
coefficient tensor, or equivalently that the many nonzero

FCI coefficients are in fact highly correlated. This has to
be contrasted with CI expansions, which are truncated in
their particle-excitation rank and therefore set many FCI
coefficients a priori to zero. The nonzero FCI coefficients
are however not a priori correlated in a CI expansion: they
are entirely free to be variationally optimized.

5.4 Size-consistency

For a method to be size-consistent, the compound wave-
function should be multiplicatively separable |Ψ〉 =
|A〉 |B〉 and the energy additively separable E = EA +EB

for noninteracting subsystems A and B. From the discus-
sion of the Schmidt decomposition above, it follows im-
mediately that an MPS is size-consistent if the orbitals of
subsystems A and B do not overlap, and if they are sepa-
rated into two groups on the one-dimensional DMRG lat-
tice [68,132]. The latter is for example realized if orbitals 1
to k correspond to subsystem A and orbitals k + 1 to L
correspond to subsystem B. DMRG will then automati-
cally retrieve a product wavefunction, in which only one
Schmidt value is nonzero at the corresponding boundary.

5.5 DMRG is not FCI

A good variational energy does not necessarily imply that
the wavefunction is accurate. Suppose we have an or-
thonormal MPS |ΨMPS〉 with virtual dimension D which
has been variationally optimized to approximate the true
ground state |Ψ0〉 with energy E0. Suppose that

|ΨMPS〉 =
√

1 − ε2 |Ψ0〉 + ε
∣∣∣Ψ̃
〉

(61)

with 〈Ψ0 | Ψ̃〉 = 0. Then

‖ |ΨMPS〉 − |Ψ0〉 ‖2 =

√(√
1 − ε2 − 1

)2

+ ε2

= ε + O (ε3) (62)

and

〈ΨMPS | Ĥ | ΨMPS〉 − E0 = ε2
(
〈Ψ̃ | Ĥ | Ψ̃〉 − E0

)
. (63)

The energy converges quadratically in the wavefunction
error. Most DMRG convergence criteria rely on energy
convergence (ε2 ≈ 0) (see Fig. 6). An important impli-
cation is that, except for tremendously large virtual di-
mensions D where ε ≈ 0, the MPS wavefunction is not
invariant to orbital rotations. The orbital choice and their
ordering on a one-dimensional lattice also influence the
convergence rate with D. Strategies to choose and or-
der orbitals are discussed in Section 7. Sparse iterative
FCI eigensolvers converge the FCI tensor to a predefined
threshold instead of the energy. An FCI solution can there-
fore be considered invariant to orbital rotations.
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6 Convergence strategies

The DMRG algorithm can get stuck in a local minimum
or a limit cycle, if D is insufficiently large [68]. The chance
of occurrence is larger for inconvenient orbital choices and
orderings. Because the virtual dimension D cannot be in-
creased indefinitely in practice, it is important to choose
the set of orbitals and their ordering well (see Sect. 7).
Additional considerations to enhance convergence are de-
scribed here.

6.1 The number of sites to be optimized
in a micro-iteration

It is better to use the two-site DMRG algorithm than the
one-site version [143]. In the one-site version, the Hamilto-
nian Ĥ is diagonalized during the micro-iterations in the
basis {∣∣αL

i−1

〉} ⊗ {|ni〉} ⊗ {∣∣αR
i

〉} instead of {∣∣αL
i−1

〉} ⊗
{|ni〉} ⊗ {|ni+1〉} ⊗ {∣∣αR

i+1

〉}. Because of the larger vari-
ational freedom in the two-site DMRG algorithm, lower
energy solutions are obtained, and the algorithm is less
likely to get stuck [88]. It might therefore be worthwhile
to optimize three or more MPS tensors simultaneously in
a micro-iteration, or to group several orbitals into a single
DMRG lattice site [27].

The two-site algorithm has another important advan-
tage, when the symmetry group of the Hamiltonian is ex-
ploited. The virtual dimension D is then distributed over
several symmetry sectors (see Sect. 9). In the one-site al-
gorithm, the virtual dimension of a symmetry sector has
to be changed manually during the sweeps [88], while the
SVD (46) in the two-site algorithm automatically picks
the best distribution.

6.2 Perturbative corrections and noise

White suggested to add perturbative corrections to the
RDM in order to enhance convergence [143]. Instead of us-
ing perturbative corrections, one can also add noise to the
RDM prior to diagonalization or to B[i] prior to SVD [68].
The corrections or noise help to reintroduce lost symmetry
sectors (lost quantum numbers) in the renormalized basis,
which are important for the true ground state. Instead of
adding noise or perturbative corrections, one can also re-
serve a certain percentage of the virtual dimension D to
be distributed equally over all symmetry sectors [74].

6.3 Getting started

The wavefunction from which the QC-DMRG algorithm
starts has an influence on the converged energy (by get-
ting stuck in a local minimum) and on the rate of conver-
gence [69,73,80]. The effect of the starting guess is esti-
mated to be an order of magnitude smaller than the effect
of the choice and ordering of the orbitals [80]. Neverthe-
less, it deserves attention.

One possibility is to choose a small active space to
start from, and subsequently augment this active space
stepwise with previously frozen orbitals [67], in analogy
to the infinite-system DMRG algorithm [29]. Natural or-
bitals from a small CASSCF calculation or HF orbitals
can be used to this end [80]. An alternative is to make
an a priori guess of how correlated the orbitals are. This
can be done with a DMRG calculation with small virtual
dimension D, from which the approximate single-orbital
entropies can be obtained. The subsystem A is then cho-
sen to be a single orbital in equation (25). The larger the
single-orbital entropy, the more it is correlated. The active
space can then be chosen and dynamically extended based
on the single-orbital entropies [102].

One can also decompose the wavefunction from a cheap
CI calculation with single and double excitations into an
MPS to start from [68,80]. Another possibility is to dis-
tribute D equally over the symmetry sectors, and to fill
the MPS with noise. This retrieves energies below the HF
energy well within the first macro-iteration [121,139].

To achieve a very accurate MPS quickly, it is also best
to start from calculations with relatively small virtual di-
mension D, and to enlarge it stepwise [68,80,144].

7 Orbital choice and ordering

There are many ways to set up a renormalization group
flow, and the specific setup influences the outcome. One
consideration of key importance in QC-DMRG is the
choice and ordering of orbitals. Most molecules or active
spaces are far from one-dimensional. By placing the or-
bitals on a one-dimensional lattice, and by assuming an
MPS ansatz with modest D, an artifical correlation length
is introduced in the system, which can be a bad approx-
imation. Over time, several rules of thumb have been es-
tablished to choose and order the orbitals.

7.1 Elongated molecules

Quantum information theory learns that locality is an im-
portant concept (see Sect. 3). The Coulomb interaction
is however long-ranged. On the other hand, the mutual
screening of electrons and nuclei can result in an effec-
tively local interaction. For elongated molecules such as
hydrogen chains [68,81,105,107,112,115], polyenes [68,78,
81,90,95], or acenes [84,85,111], which are more or less one-
dimensional, choosing a spatially local basis has turned
out to be very beneficial. There are roughly three ways
to choose a local basis: symmetric orthogonalization as it
lies closest to the original Gaussian basis functions [84,85,
105,107,115,145], explicit localization procedures such as
Pipek-Mezey or Edmiston-Ruedenberg [90,111,140,146],
and working in a biorthogonal basis [78,105]. For the lat-
ter, the effective Hamiltonian is not hermitian anymore.
The DMRG algorithm should then be correspondingly
adapted [78,105,147]. The adapted algorithm is slower and
prone to convergence issues, and it is therefore better to
use one of the other two localized bases [78,105]. Figure 7
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Fig. 7. The computational details were discussed in the
caption of Figure 5. The active space of C14H16, which con-
sists of 28 π-orbitals, is studied both with ordered localized
orbitals (Edmiston-Ruedenberg) and canonical orbitals (re-
stricted HF). The energy converges significantly faster with
the number of reduced virtual basis states D when ordered
localized orbitals are used.

illustrates the speed-up in energy convergence by using a
localized basis for all-trans polyenes.

7.2 Hamiltonian measures

If the topology of the molecule does not provide hints
for choosing and ordering orbitals, it was investigated
whether the Hamiltonian (1) can be of use. Several in-
tegral measures have been proposed, for which a mini-
mal bandwidth is believed to yield a good orbital order.
Chan and Head-Gordon proposed to minimize the band-
width of the one-electron integral matrix tij of the HF
orbitals [68]. In quantum chemistry, it is often stated that
the one-electron integrals are an order of magnitude larger
than the two-electron integrals, and that quantum chem-
istry therefore corresponds to the small-U limit of the
Hubbard model [69,102,148]. On the other hand, there are
many two-electron integrals, and they may become impor-
tant due to their number. When other orbitals than the
HF orbitals are used, it may therefore be interesting to
minimize the bandwidth of the Fock matrix [71]:

Fij = tij +
∑

k∈occ

(4vik;jk − 2vik;kj) . (64)

Other proposed integral measures are the MP2-inspired
matrix [72]:

Gij =
v2

ii;jj

|εi − εj | (65)

where {εi} are the HF single-particle energies, as well as
several measures in reference [77]. These are the Coulomb
matrix Jij = vij;ij , the exchange matrix Kij = vij;ji, the

mean-field matrix Mij = (2Jij − Kij), and two derived
quantities:

J
′
ij = e−Jij (66)

M
′
ij = e−Mij . (67)

While the one-electron integrals tij vanish when orbitals i
and j belong to different molecular point group irreps, Jij

and Kij do not. Reference [77] used a genetic algorithm
to find the optimal HF orbital ordering, in order to assess
the proposed integral measures. This genetic algorithm
was expensive, which limited its usage to small test sys-
tems. It favoured Kij bandwidth minimization, although
no definite conclusions were drawn [77]. The exchange ma-
trix Kij was recently used in two DMRG studies [111,112]
in conjunction with localized orbitals, because it then di-
rectly reflects their overlaps and distances.

7.3 Entanglement measures

DMRG can be analyzed by means of the underlying MPS
ansatz and quantum information theory. The latter can
tell us something more than locality. Legeza and Sólyom
proposed to use the single-orbital entropies to find an op-
timal ordering [73]. Subsystem A is then chosen to be a
single orbital k in equation (25), and its entropy is de-
noted by S1(k). It can be efficiently calculated in the
DMRG algorithm, because the corresponding RDM ρ̂k can
be built from the expectation values 〈(1 − n̂k↑)(1 − n̂k↓)〉,
〈n̂k↑n̂k↓〉, 〈n̂k↑(1 − n̂k↓)〉, and 〈(1 − n̂k↑)n̂k↓〉, in which
n̂kσ = â†

kσâkσ [82]. This procedure hence does not re-
quire to reorder any orbitals. The larger the single-orbital
entropy S1(k), the more orbital k is correlated. Legeza
and Sólyom proposed to perform a small-D DMRG cal-
culation to estimate S1(k), and to place the orbitals with
large S1(k) in the center of the chain, and the ones with
small S1(k) near the edges. They reasoned that orbitals
close to the Fermi surface are more entangled and there-
fore have a larger single-orbital entropy. Because DMRG
only captures local correlations, these orbitals should lie
close to each other.

Rissler et al. proposed to use the two-orbital mutual in-
formation Ik,l to order the orbitals [82]. In addition to the
single-orbital entropies S1(k) and S1(l), the two-orbital
entropy S2(k, l) is also needed to calculate Ik,l. It can be
obtained by choosing for subsystem A the two orbitals k
and l. S2(k, l) can again be efficiently calculated in the
DMRG algorithm, as its RDM can be built from expecta-
tion values of operators acting on at most two sites [82].
The so-called subadditivity property of the entanglement
entropy dictates that:

S2(k, l) ≤ S1(k) + S1(l). (68)

Any entanglement between orbitals k and l reduces
S2(k, l) with respect to S1(k)+S1(l). The two-orbital mu-
tual information is defined by:

Ik,l =
1
2

(S1(k) + S1(l) − S2(k, l)) (1 − δk,l) ≥ 0, (69)
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Fig. 8. The computational details for N2 were discussed in the
caption of Figure 6. The energy converges significantly faster
with the number of reduced virtual basis states D when the
irrep blocks of bonding and anti-bonding molecular orbitals
are placed next to each other.

and is thus a symmetric measure of the correlation be-
tween orbitals k and l. Its bandwidth can be minimized,
for example based on cost functions such as

I =
∑

k,l

Ik,l|k − l|η. (70)

Rissler et al. found no clear correspondence between Ik,l

and the integral measures of Section 7.2. They observed
that Ik,l is large between orbitals which belong to the
same molecular point group irrep, as well as between
corresponding bonding and anti-bonding orbitals with
large partial occupations (far from empty or doubly oc-
cupied) [82]. Later studies of various groups supported
this finding and corresponding ordering [94,95,102,110,
115,121]. For small molecules such as dimers, it is best
to group orbitals of the same molecular point group irrep
into blocks, and place irrep blocks of bonding and anti-
bonding type next to each other. If in addition natural
orbitals (NO) are used, the orbitals within an irrep block
should be reordered so that the ones with NO occupation
number (NOON) closest to one, are nearest to the block
of their bonding or anti-bonding colleagues [115]. Figure 8
illustrates the speed-up in energy convergence by reorder-
ing the point group irreps.

8 Variations on QC-DMRG

8.1 Quadratic scaling DMRG

For elongated molecules, when the active space is studied
in a localized basis,

vij;kl =
∫

dr1dr2

φ∗
i (r1)φk(r1)φ∗

j (r2)φl(r2)
|r1 − r2| (71)

vanishes faster than exponential with the separation
of orbitals i and k, and the separation of orbitals j
and l. By defining a threshold, below which these two-
body matrix elements can be neglected, one can re-
duce the cost of the QC-DMRG algorithm in Table 1
to O(L2D3) computational time, O(LD2) memory, and
O(L2D2) disk [27,81,84]. Quadratic scaling DMRG (QS-
DMRG) is not variational anymore because the Hamilto-
nian is altered, but the error can be controlled with the
threshold. At present, QC-DMRG can achieve FCI energy
accuracy for about 40 electrons in 40 highly correlated or-
bitals (in compact molecules) [106,121]. With QS-DMRG,
one can achieve FCI energy accuracy for 100 electrons in
100 orbitals [81], and maybe more. It should however be
repeated, that this method relies on the topology of the
molecule, and exploits the fact that DMRG works very
well for one-dimensional systems.

8.2 Building-in dynamic correlation

QC-DMRG can at present achieve FCI energy accuracy
for about 40 electrons in 40 orbitals. The static cor-
relation in active spaces up to this size can hence be
resolved, while dynamic correlation has to be treated a
posteriori. Luckily, QC-DMRG allows for an efficient ex-
traction of the two-body RDM (2-RDM) [88,90]. The
2-RDM is not only required to calculate analytic nu-
clear gradients [68,117], but also to compute the gradient
and the Hessian in CASSCF [16]. It is therefore natural
to introduce a CASSCF variant with DMRG as active
space solver, DMRG-CASSCF or DMRG-SCF [89,90,92].
Static correlation can be treated with DMRG-SCF. To
add dynamic correlation as well, three methods have been
introduced.

With more effort, the 3-RDM and some specific con-
tracted 4-RDMs can be extracted from DMRG as well.
These are required to apply second-order perturbation
theory to a CASSCF wavefunction, called CASPT2, in
internally contracted form. The DMRG variant is called
DMRG-CASPT2 [104,115,117].

Based on a CASSCF wavefunction, a configuration
interaction expansion can be introduced, called MRCI.
Recently, an internally contracted MRCI variant was pro-
posed, which only requires the 4-RDM [116]. By approxi-
mating the 4-RDM with a cumulant reconstruction from
lower-rank RDMs, DMRG-MRCI was made possible [116].

Yet another way is to perform a canonical transforma-
tion (CT) on top of an MR wavefunction, in internally
contracted form. When an MPS is used as MR wavefunc-
tion, the method is called DMRG-CT [95,96,109].

8.3 Excited states

In addition to ground states, DMRG can also find excited
states. By projecting out lower-lying eigenstates [121], or
by targeting a specific energy with the harmonic Davidson
algorithm [84], DMRG solves for a particular excited state.
In these state-specific algorithms, the whole renormalized



Page 14 of 20

basis is used to represent one single eigenstate. In state-
averaged DMRG, several eigenstates are targeted at once
to prevent root-flipping. Their RDMs are weighted and
summed to perform the DMRG renormalization step [149].
The renormalized basis then represents several eigenstates
simultaneously.

DMRG linear response theory (DMRG-LRT) [93] al-
lows to calculate response properties, as well as excited
states. Once the ground state has been found, the MPS
tangent vectors to this optimized point can be used as
an (incomplete) variational basis to approximate excited
states [93,119,150–153]. As the tangent vectors to an op-
timized Slater determinant yield the configuration inter-
action with singles (CIS), also called the Tamm-Dancoff
approximation (TDA), for HF theory [4], the same names
are used for DMRG: DMRG-CIS or DMRG-TDA. The
variational optimization in an (incomplete) basis of MPS
tangent vectors can be extended to higher-order tangent
spaces as well. DMRG-CISD, or DMRG configuration in-
teraction with singles and doubles, is a variational approx-
imation to target both ground and excited states in the
space spanned by the MPS reference and its single and
double tangent spaces [152].

By linearizing the time-dependent variational principle
for MPS [154], the DMRG random phase approximation
(DMRG-RPA) is found [119,152,153,155], again in com-
plete analogy with RPA for HF theory.

8.4 Other ansatzes

Two other related ansatzes have been employed in quan-
tum chemistry: the TTNS [63,64,112] and the complete-
graph TNS (CGTNS) [100,101]:

|Ψ〉 =
∑

{nk}

⎛

⎝
∏

i<j

C[i, j]ninj

⎞

⎠ |n1 . . . nL〉 . (72)

The latter is an example of a correlator product state
(CPS) [156], in which multiple tensors can have the same
physical index. The TTNS requires a smaller virtual di-
mension than DMRG to achieve the same accuracy. The
accuracy of the CGTNS is limited by the number of corre-
lated orbitals in each cluster (two in Eq. (72)). For a given
desired accuracy, the optimization algorithms for TTNS
and CGTNS are currently less efficient than QC-DMRG.
As a result, QC-DMRG is still the preferred choice for ab
initio quantum chemistry.

There is also a QC-DMRG algorithm for the relativis-
tic many-body four-component Dirac equation [120].

9 Symmetry

9.1 Introduction

The symmetry group of a Hamiltonian can be used to re-
duce the dimensionality of the exact diagonalization prob-
lem [157,158]. The Hamiltonian does not connect states

which belong to different irreps or to different rows of the
same irrep. By choosing a basis of symmetry eigenvec-
tors, the Hamiltonian becomes block diagonal, and each
block can be diagonalized separately. The blocks which
belong to different rows of the same irrep are closely re-
lated, and yield the same energies. In Section 3, it was
discussed how locality leads to low-entanglement wave-
functions. These allow to reduce the dimensionality of the
exact diagonalization problem as well, at least for ground
and low-lying eigenstates. Symmetry and locality can be
combined, which is shown in this section for DMRG.

From the very beginning, the Abelian particle-number
and spin-projection symmetries were incorporated in QC-
DMRG [27,67,68]. Abelian point group symmetry followed
quickly [73,75]. These symmetries are easy to implement,
because they commute with the DMRG RDM. For SU(2)
spin symmetry this is not the case, which is why its im-
plementation took longer.

Sierra and Nishino first introduced exact SU(2) spin
symmetry into DMRG with the interaction-round-a-face
DMRG method [159]. McCulloch and Gulácsi later found
an easier way, based on a quasi-RDM [160–162] (see
Sect. 9.2). For the underlying MPS, this boils down to
assuming that the rank-three MPS tensors are irreducible
tensor operators of the symmetry group [163]. This opened
the path to implement multiplicity-free non-Abelian sym-
metries also in TNSs [164–166]. The spin-adapted DMRG
method of McCulloch and Gulácsi was later introduced
in nuclear structure calculations [167–169], where it is
known as angular momentum DMRG or JDMRG, as well
as in QC-DMRG [87,106,107,121]. Non-multiplicity-free
symmetries can also be exploited in DMRG, but require
special considerations [170].

Before the introduction of exact SU(2) symmetry in
QC-DMRG, several tricks were employed. Legeza et al.
used a spin-reflection operator to distinguish even- and
odd-spin states based on their spin parity [69,71,171]. A
level shift operator [79,86,90,100]

Ĥ = Ĥ0 + αŜ−Ŝ+ (73)

Ĥ = Ĥ0 + αŜ2 (74)

can also be used to raise higher spin states in energy. Zgid
and Nooijen [87] used the quasi-RDM to impose exact
SU(2) spin symmetry in QC-DMRG, but they retained
all states of a multiplet explicitly in the renormalized ba-
sis. In the works of Sharma and Chan [106] and Wouters
et al. [107,121], the Wigner-Eckart theorem was exploited
to work with reduced renormalized basis states instead of
entire multiplets.

9.2 The quasi-RDM method for SU(2) spin symmetry

McCulloch’s quasi-RDM method [160–163] is reviewed
in this section. Consider the bases {|jAjz

AαA〉} and
{|jBjz

BαB〉} for subsystems A and B respectively, which
have good spin j and spin projection jz quantum numbers.
α keeps track of the number of basis states with symmetry
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(j, jz). The wavefunction for the compound system with
spin S and spin projection Sz can be written as

|Ψ〉=
∑

jAjz
AαAjBjz

BαB

ΨSSz

(jAjz
AαA);(jBjz

BαB)|jAjz
AαA〉|jBjz

BαB〉 .

(75)
The coefficients ΨSSz

(jAjz
AαA);(jBjz

BαB) are not completely in-
dependent, but are related to each other by Clebsch-
Gordan coefficients. The triangle condition for angular
momentum and the sum rule for spin projections have
to be fulfilled for example:

|jA − jB| ≤ S ≤ jA + jB, (76)
jz
A + jz

B = Sz. (77)

Only if the compound wavefunction is a spin singlet, jA

and jB are constrained to be equal in the summation. This
implies that the RDM ρ̂A for subsystem A is in general
not block-diagonal with respect to jA, except if |Ψ〉 is a
singlet:

ρ̂A =
∑

jAjz
AαAj̃Aα̃A

|jAjz
AαA〉 〈j̃Ajz

Aα̃A|

×
⎛

⎝
∑

jBjz
BαB

ΨSSz

(jAjz
AαA);(jBjz

BαB)Ψ
SSz∗
(j̃Ajz

Aα̃A);(jBjz
BαB)

⎞

⎠.

(78)

The eigenvectors of ρ̂A will then not be spin eigenvectors.
One way to obtain a renormalized basis of spin eigenvec-
tors, is by using the quasi-RDM. It can be obtained from
ρ̂A by setting the off-diagonal blocks, which connect dif-
ferent spin symmetry sectors, to zero:

ρ̂A
quasi =

∑

jAjz
AαAα̃A

|jAjz
AαA〉 〈jAjz

Aα̃A|

×
⎛

⎝
∑

jBjz
BαB

ΨSSz

(jAjz
AαA);(jBjz

BαB)Ψ
SSz∗
(jAjz

Aα̃A);(jBjz
BαB)

⎞

⎠.

(79)

The eigenvectors of ρ̂A
quasi are spin eigenvectors, and their

probability of occurrence in subsystem A is given by the
corresponding eigenvalues of ρ̂A

quasi [160]. Quasi-RDMs can
be constructed analogously for other non-Abelian symme-
tries as well.

A performance gain in memory and computer time can
be obtained by working with reduced basis states. If for
all multiplets (j, α), all spin projections jz are present, a
Clebsch-Gordan coefficient can be factorized from the co-
efficient tensor in equation (75) due to the Wigner-Eckart
theorem:

|Ψ〉 =
∑

jAjz
AαAjBjz

BαB

〈jAjz
AjBjz

B | SSz〉ΨS
(jAαA);(jBαB)

× |jAjz
AαA〉 |jBjz

BαB〉 , (80)

or in reduced form:

||Ψ〉 =
∑

jAαAjBαB

ΨS
(jAαA);(jBαB) ||jAαA〉 ||jBαB〉 . (81)

The DMRG renormalization tranformation to augment
the left renormalized basis with one site (containing one
spin) can analogously be written as

|jij
z
i αi〉 =

∑

ji−1jz
i−1αi−1sisz

i

A[i](sis
z
i )

(ji−1jz
i−1αi−1);(jijz

i αi)

× ∣∣ji−1j
z
i−1αi−1

〉 |sis
z
i 〉 , (82)

or in reduced form as

||jiαi〉 =
∑

ji−1αi−1si

T [i](si)
(ji−1αi−1);(jiαi)

||ji−1αi−1〉 ||si〉 ,

(83)
with

A[i](sis
z
i )

(ji−1jz
i−1αi−1);(jijz

i αi) = 〈ji−1j
z
i−1sis

z
i | jij

z
i 〉

× T [i](si)
(ji−1αi−1);(jiαi)

. (84)

A[i](si) can therefore be regarded as an irreducible tensor
operator with spin si.

An extra performance gain can be achieved if the oper-
ators in the Hamiltonian are irreducible tensor operators
of the imposed symmetry group. For spin systems, the
following operators are an example:

(
Ŝ1
−1, Ŝ

1
0 , Ŝ1

1

)
=

(
Ŝx − iŜy√

2
, Ŝz,− Ŝx + iŜy√

2

)
. (85)

Due to the Wigner-Eckart theorem

〈s1s
z
1 | Ŝ1

m | s2s
z
2〉 = 〈s1 || Ŝ1 || s2〉 〈s2s

z
21m | s1s

z
1〉 , (86)

renormalized operators can be obtained in reduced form
by recoupling the irreducible tensor operators and the re-
duced renormalized basis states. Formally this boils down
to contracting the common multiplets of the Clebsch-
Gordan coefficients in equations (84) and (86). The ten-
sor product of irreducible tensor operators can also be
obtained by working solely with reduced quantities [163].
Examples can be found in references [107,139].

For the coupling to spin S in equation (81), all spin
symmetry sectors jA and jB which comply with equa-
tion (76) have to be taken into account. This strategy
to form a spin-S wavefunction is hence less efficient for
larger values of S. One way to circumvent the large sum-
mation, is by adding a noninteracting site at the right
end of the one-dimensional lattice, with spin S [162]. At
the position of the current micro-iteration, one can then
simply recouple to a singlet state. Sharma called this
the singlet-embedding strategy [106]. In Section 9.3, the
singlet-embedding strategy will arise naturally based on
equations (82)–(84).

Equation (80) allows to explicitly target a specific sym-
metry sector of the Hamiltonian. The wavefunction is then
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always an exact eigenstate of Ŝ2, irrespective of the virtual
dimension D. A singlet-triplet gap can then for example
be obtained by two ground state calculations, instead of
several excited state calculations. For the latter, spin mix-
ing can occur, because working in the Sz = 0 symmetry
sector does not imply anything about S. Explicit measure-
ment of Ŝ2, and its evolution with D, should then be used
to discern the spin S.

Another advantage is the memory reduction. A[i] con-
tains (2si + 1)D2 variables. Due to the Clebsch-Gordan
coefficients in equation (84), it becomes block-sparse.
Whenever a Clebsch-Gordan coefficient is zero, the cor-
responding MPS tensor block does not need to be allo-
cated. In addition, the symmetry block (ji−1, ji) in A[i] is
represented in reduced form in T [i]. D(ji) reduced renor-
malized basis states correspond in fact to (2ji+1)D(ji) in-
dividual renormalized basis states. Next to block-sparsity,
equation (84) hence also encompasses information com-
pression. The block-sparsity and the compression result in
faster contractions over common indices. Next to a mem-
ory advantage, there is hence also an advantage in com-
putational time.

9.3 Symmetries in ab initio quantum chemistry

In this section, SU(2) spin symmetry, U(1) particle-
number symmetry, and the Abelian point group symme-
tries P with real-valued character tables,

P ∈ {C1, Ci, C2, Cs, D2, C2v, C2h, D2h}, (87)

will be discussed. Sharma et al. have recently imposed
non-Abelian point group symmetry as well [125], but this
is beyond the scope of this review. Because these Abelian
groups P all have real-valued character tables, the direct
product of any irrep Ij with itself gives the trivial irrep I0:

∀Ij : Ij ⊗ Ij = I0. (88)

The physical basis states of orbital k correspond to the
following symmetry eigenstates:

|−〉 → |s = 0; sz = 0; N = 0; I = I0〉 (89)

|↑〉 →
∣∣∣∣s =

1
2
; sz =

1
2
; N = 1; I = Ik

〉
(90)

|↓〉 →
∣∣∣∣s =

1
2
; sz = −1

2
; N = 1; I = Ik

〉
(91)

|↑↓〉 → |s = 0; sz = 0; N = 2; I = I0〉 . (92)

The virtual basis states are also labeled by the quantum
numbers of SU(2) ⊗ U(1) ⊗ P:

|α〉 → |jjzNIα〉 . (93)

The equivalent of equation (84) is then

A[i](sszNI)

(jLjz
LNLILαL);(jRjz

RNRIRαR) = 〈jLjz
Lssz | jRjz

R〉

× δNL+N,NRδIL⊗I,IRT [i](sNI)
(jLNLILαL);(jRNRIRαR). (94)

Fig. 9. Imposing SU(2), U(1), and P symmetry.

The SU(2), U(1), and P symmetries are locally imposed by
their Clebsch-Gordan coefficients. These express nothing
else than resp. local allowed spin recoupling, local parti-
cle number conservation, and local point group symmetry
conservation. The index α keeps track of the number of re-
duced renormalized basis states with symmetry (j, N, I).
This equation again encompasses block-sparsity and in-
formation compression.

The desired global symmetry (SG, NG, IG) can be im-
posed with the singlet-embedding strategy (see Fig. 9).
Assume that the MPS is part of a larger DMRG chain,
to which it is connected on its left and right ends.
On the left end, there is only one irrep (jL, NL, IL) =
(0, 0, I0) in the virtual bond, which has virtual dimen-
sion 1. On the right end, there is also only one irrep
(jR, NR, IR) = (SG, NG, IG) in the virtual bond, which
also has reduced virtual dimension 1. Equation (94) and
Figure 9 imply that the addition of an extra orbital to the
left renormalized basis is repeated from symmetry sector
(0, 0, I0) at boundary 0 to symmetry sector (SG, NG, IG)
at boundary L.

Towards the middle of this embedded MPS chain, the
reduced virtual dimension has to grow exponentially for
the MPS to represent a general symmetry-adapted FCI
state. To make the MPS ansatz in equation (94) of practi-
cal use, the total reduced virtual dimension per bond has
to be truncated. The extrapolation scheme (57) is shown
for the one-dimensional Hubbard model [148] with open
boundary conditions

Ĥ = −
L−1∑

i=1

∑

σ

(
â†

iσâi+1σ + â†
i+1σâiσ

)
+U

L∑

i=1

â†
i↑âi↑â

†
i↓âi↓

(95)
in Figure 10. The SU(2)⊗U(1)⊗C1 symmetry introduces
block-sparsity and information compression. The latter
can be seen in the faster energy convergence with the num-
ber of reduced virtual basis states.

Due to the Abelian point group symmetry P, the ma-
trix elements hij;kl of the Hamiltonian (8) are only nonzero
if Ii ⊗ Ij = Ik ⊗ Il. If P is nontrivial, this considerably
reduces the number of terms in the construction of the
complementary renormalized operators, and in the multi-
plication of the effective Hamiltonian with a trial vector.

The operators

b̂†cγ = â†
cγ (96)

b̂cγ = (−1)
1
2−γ âc−γ (97)

for orbital c correspond to resp. the (s = 1
2 , sz = γ, N =

1, Ic) row of irrep (s = 1
2 , N = 1, Ic) and the (s = 1

2 , sz =
γ, N = −1, Ic) row of irrep (s = 1

2 , N = −1, Ic) [172]. b̂†

and b̂ are hence both doublet irreducible tensor operators.
As described in Section 9.2, this fact permits exploitation
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Fig. 10. Convergence of the one-dimensional Hubbard model
with open boundary conditions, L = 36 sites, N = 22 electrons,
U = 6, in the spin singlet state. The convergence scheme (57) is
tested for a DMRG code without any imposed symmetries and
for CheMPS2 [121] with imposed SU(2)⊗U(1)⊗C1 symmetry.
κ is the parameter C4 of equation (57), and D denotes the total
number of renormalized basis states at each virtual bond. For
CheMPS2, these are the reduced ones.

of the Wigner-Eckart theorem for operators and (comple-
mentary) renormalized operators. Contracting terms of
the type (94), (96) and (97) can be done by implicitly
summing over the common multiplets and recoupling the
local, virtual and operator spins. As is shown in refer-
ences [107,139] (complementary) renormalized operators
then formally consist of terms containing Clebsch-Gordan
coefficients and reduced tensors. In an actual implemen-
tation such as Block [106] or CheMPS2 [107,121], only
the reduced tensors need to be calculated, and Wigner 3-j
symbols or Clebsch-Gordan coefficients are never used.

10 QC-DMRG codes and studied systems

Table 2 gives an overview of the currently existing QC-
DMRG codes. Two of them are freely available, Block
and CheMPS2. Four codes have SU(2) spin symmetry:
Zgid’s code, Rego, Block, and CheMPS2. The former
two explicitly retain entire multiplets at each virtual bond,
while the latter two exploit the Wigner-Eckart theorem
to work with a reduced renormalized basis and reduced
renormalized operators (see Sect. 9).

Two parallellization strategies are currently used: pro-
cesses can become responsible of certain site indices of the
(complementary) renormalized operators [74], or of certain
symmetry blocks in the virtual bonds [94]. For condensed-
matter Hamiltonians, a real-space parallellization strategy
has appeared recently [175], which might also be useful for
QC-DMRG.

Many properties of many systems have been
studied. QC-DMRG is of course able to calcu-
late the ground state energy, but also excited
state energies [69,71,79,84,90,117,119,121,125],

Table 2. Overview of QC-DMRG codes.

Name Authors
White et al. [27,82]

Mitrushchenkov et al. [67,105]

Block(a) Chan et al. [68,106]
Qc-Dmrg-Budapest Legeza et al. [69,113]

Qc-Dmrg-Eth Reiher et al. [97,108]
Zgid and Nooijen [87,89]

Luo et al. [98]
Rego Kurashige et al. [94,114]

CheMPS2(b) Wouters et al. [107,121]
Qc-Maquis Keller and Reiher [135]

(a)Block is freely available from reference [173]. (b)CheMPS2
is freely available from reference [174].

avoided crossings [64,71,79,121], spin split-
tings [85–87,96,99,100,106,107,118,121,122,127], polyradi-
cal character by means of the NOON spectrum [85,92,111],
static and dynamic polarizabilities [93,107], static second
hyperpolarizabilities [107], particle-particle, spin-spin, and
singlet diradical correlation functions [85,106,111,116], as
well as expectation values based on the 1- or 2-RDM such
as spin densities [108,124] and dipole moments [71].

The systems which have been studied range from
atoms and first-row dimers to large transition metal clus-
ters and π-conjugated hydrocarbons. Several of them
have repeatedly received attention in the QC-DMRG
community:

– H2O [27,68–70,73,74,76,97,98,109,112,119] was already
the subject of several FCI studies, due to its natural
abundance and small number of electrons.

– Hydrogen chains [68,81,88,89,105,107,112,115]: these
one-dimensional systems exhibit large static correla-
tion at stretched geometries. They are optimal test-
cases for QC-DMRG.

– All-trans polyenes [68,78,81,90,95,116,119]: they are
also one-dimensional, with a large MR character.

– N2 [67,68,72,73,75,82,83,109,112,113,115,116] was al-
ready the subject of several FCI studies, due to its
MR character at stretched bond lengths and its small
number of electrons.

– Cr2 [67,77,80,94,104,106,112,115] is only found to be
bonding at the CASPT2 level. A complete basis
set extrapolation of DMRG-CASPT2 calculations in
the cc-pwCV(T,Q,5)Z basis, correlating 12 electrons
in 28 orbitals, was needed to retrieve an acceptable
dissociation energy [104].

– [Cu2O2]2+ [86,94,95,102] requires accurate descrip-
tions of both static and dynamic correlation along
its isomerization coordinate. DMRG-CT, correlating
28 electrons in 32 orbitals, showed that the bis(μ-oxo)
isomer is more stable than the μ − η2 : η2 peroxo
isomer [95].

Other QC-DMRG studies treat

– the avoided crossings in LiF [64,71], CsH [79,113], and
C2 [121];
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– the static correlation due to π-conjugation in
acenes [84,85,111], poly(phenyl) carbenes [92,99],
perylene [109], graphene nanoribbons [111], free base
porphyrin [96,116], and spiropyran [117];

– transition metal clusters such as [Fe2S2(SCH3)4]2−
[106,119], [Fe(NO)]2+ [108,110], Mn4CaO5 in photo-
system II [114], the dinuclear oxo-bridged complexes
[Fe2OCl6]2− and [Cr2O(NH3)10]4+ [122], diferrate
[H4Fe2O7]2+ [126], and oxo-Mn(Salen) [127];

– molecules with heavy elements, for which relativistic
effects become important, such as CsH [79,113], the
complexation of CUO with four Ne or Ar atoms [118],
and the binding energy of TlH [120].

For transition metal clusters, QC-DMRG is currently the
only viable choice due to the large active spaces which
have to be handled.

11 Conclusion

The DMRG algorithm is well understood by means of
the underlying MPS wavefunction. This allows to assess
DMRG with concepts from quantum information theory.
Accurate extrapolation schemes are known for the evolu-
tion of the variational energy with increasing virtual di-
mension D, or with decreasing discarded weight. The use
of symmetry to reduce the computational cost is also well
understood. Most progress can still be made in the orbital
choice and ordering for nontrivial orbital topologies.

The 2-RDM can be extracted efficiently from QC-
DMRG, and is required to calculate the gradient and the
Hessian in CASSCF. QC-DMRG is therefore an ideal can-
didate to replace the FCI solver in CASSCF. DMRG-SCF,
as the method is called, can resolve the static correlation
in active spaces of up to 40 electrons in 40 orbitals. Sev-
eral dynamical correlation theories for CASSCF have been
used with DMRG-SCF as well: DMRG-CASPT2, DMRG-
MRCI, and DMRG-CT. QC-DMRG has not only the abil-
ity to provide accurate reference data, but for a num-
ber of challenging systems it is currently also the only
viable choice. These features have made DMRG increas-
ingly important for ab initio quantum chemistry during
the past 15 years, and undoubtedly the method will be
indispensable in future years as well.
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M. Reiher, J. Chem. Theor. Comput. 9, 2959 (2013)
114. Y. Kurashige, G.K.-L. Chan, T. Yanai, Nat. Chem. 5,

660 (2013)
115. Y. Ma, H. Ma, J. Chem. Phys. 138, 224105 (2013)
116. M. Saitow, Y. Kurashige, T. Yanai, J. Chem. Phys. 139,

044118 (2013)

http://arxiv.org/abs/cond-mat/0407066
http://arxiv.org/abs/1403.0981


Page 20 of 20

117. F. Liu, Y. Kurashige, T. Yanai, K. Morokuma, J. Chem.
Theor. Comput. 9, 4462 (2013)

118. P. Tecmer, K. Boguslawski, Ö. Legeza, M. Reiher, Phys.
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