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Abstract. It is shown that the neutron matter interacting through Argonne V18 pair-potential plus modern
variants of Urbana or Illinois three-body forces is unstable. For the energy of N neutrons E(N), which
interact through these forces, we prove mathematically that E(N) = —cN® 4+ O(N®/3), where ¢ > 0 is a
constant. This means that: i) the energy per particle and neutron density diverge rapidly for large neutron
numbers; ii) bound states of N neutrons exist for N large enough. The neutron matter collapse is possible
due to the form of the repulsive core in three-body forces, which vanishes when three nucleons occupy the
same site in space. The old variant of the forces Urbana VI, where the phenomenological repulsive core
does not vanish at the origin, resolves this problem. We prove that to prevent the collapse one should add
a repulsive term to the Urbana IX potential, which should be larger than 50 MeV when 3 nucleons occupy

the same spatial position.

1 Introduction

It is a common place that two liters of water contain twice
as much energy as one liter. Thermodynamically speaking,
this is the result of the energy being an extensive quan-
tity [1]. From the quantum mechanical point of view this
extensivity of the energy can be stated as the following
result: let E(N) be the energy of N atoms or molecules,
where all nuclei and electrons are treated as point parti-
cles interacting solely through the Coulomb forces. Then
the limit limy_ E(N)/N is supposed to exist, that is
the energy per atom (molecule) approaches a limit in the
many-body problem. A formidable task is to prove that
the energy can be linearly bounded from up and from
below ¢cN < E < CN. This type of inequality proves
the stability of matter (the most difficult part here is to
prove the lower bound). In their seminal paper [2] Dyson
and Lennard proved the stability of non-relativistic mat-
ter made of pointwise nuclei and electrons, see also [3] on
the history of this subject. Lieb and Thirring [4] simplified
the argument and improved the value of the constant ¢ by
orders of magnitude. The corresponding mathematical is-
sues are enlightened in detail in [3]. The proof of Dyson
and Lennard also demonstrated the vital role of the Pauli
principle for the stability matter: if electrons were bosons
then the energy would not grow linearly in IV, but rather
as E(N) ~ N°/3 see [3] for the proof.
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Nuclear substance formed by protons and neutrons
also forms stable matter. For finite nuclei this is best man-
ifested in the Bethe-Weizsécker formula [5]. For symmetric
nuclear matter (number of protons is equal to the number
of neutrons) the energy per particle is approximately equal
16 MeV and the nuclear density is p ~ 0.16 fm =3 [5]. Nu-
clei that are composed solely from neutrons are believed to
have positive energy, however, the question of existence of
bound state of N neutrons, where N is large, is still not
ultimately resolved [6,7]. Adding to the strong interac-
tion gravitational forces enables the creation of neutron
stars, which contain about 10°” neutrons. The astrophys-
ical data regarding masses and radii of these stars makes
us conclude that the neutrons inside them form neutron
matter. Let us remark that for stability of nuclear matter
the Pauli principle is absolutely essential.

The basic model of a nuclear system assumes that
the Hamiltonian H = T + 7, _,vij + >, 4 Vijk Pro-
vides a good description for any number of nucleons [8,9].
Here T is the kinetic-energy operator, v;; and v, are two
and three-body interactions, respectively. There are cur-
rently various pair interactions that reproduce the avail-
able nucleon-nucleon scattering data very well. Among
those Argonne V18 interaction [10] is almost local and
is well-suited for precise calculations of light nuclei. In
order to produce correct binding energies of nuclei one
has to supplement this two-body potential with the ap-
propriate three-body force. Currently one uses Urbana or
Illinois three-body interactions [9,11]. The calculations of
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light nuclei showed [12-15] that these interactions repre-
sent a highly successful model of nuclear systems, which
predicts very well energy levels and wave functions seen in
the experiment. Within current models the main attrac-
tive part of three-body potentials is contained in the two-
pion exchange potential [9,11,16,17]. The nuclear matter,
however, does not saturate satisfactorily with these poten-
tials and one needs a repulsive three-body force [18]. This
three-body repulsion has a phenomenological origin and as
we shall see its current form used in Urbana IX and Illi-
nois 7 interactions leads to the collapse of neutron matter:
the energy of N neutrons behaves like E(N) ~ —cN?® +
O(N?®/3), where the constant ¢ is positive. This means
that the energy per particle diverges with large N. Bound
multineutrons exist within this model as well, one only
needs a large number of neutrons to make them bound.

Three-body force forms a basic and necessary ingredi-
ent of a nuclear force. The most direct way to study it is by
analyzing scattering data and doing calculations of light
nuclei. Below we show how a theoretical analysis of neu-
tron matter helps improving the expression of the 3-body
force. The source of the problem leading to the collapse
of neutron matter is the fact that the 3-body force van-
ishes when 3 nucleons occupy the same position in space.
The required corrections are substantial: if one adds to
Urbana IX a positive Saxon-Woods 3-body term, which
prevents instability, its value at zero, where all 3 nucle-
ons occupy the same spatial position, should be at least
50 MeV. This value is significant on the scale of 3-body
forces. Adding a repulsive term like this affects the high
density behavior of EOS of neutron matter used in neutron
star calculations. It also changes the overall 3-body force
because with such repulsive core the attractive part has
to be readjusted. Let us stress that 50 MeV is a minimal
required value! It can get larger depending on the diffuse-
ness of the Saxon-Woods potential and, in fact, becomes
larger if one considers non-polarized neutron matter. The
repulsive term in the Urbana interaction is isotopically in-
variant, which means that it appears in normal nuclei, in
symmetric nuclear matter, etc. Thus the obtained results
affect not only neutron matter, they affect all calculations
in nuclear systems, which use 3-body forces like Urbana
or Illinois. In sect. 3 a simple explanation is given, why
the collapse takes place.

2 Upper bound on the energy of 2N neutrons

Below we shall construct the upper bound on the energy of
interacting neutrons. In the framework of non-relativistic
quantum mechanics related bounds were obtained in [19-
23], where the authors investigated the question of exis-
tence of bound states of N identical particles, which lie
below dissociation thresholds. In [21] Zhislin has proved
the following result. Let E(N) denote the ground-state
energy of N fermions (or bosons) that interact through
the scalar pair potential v(r) satisfying the following con-
dition:

/ v(ry — ry)dridry < 0, (1)
ri,ro€K
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where K is a fixed arbitrary finite cube in the three-
dimensional space. Then E(N) < —cN? for N > N,
where ¢, Ng > 0 are constants. For N fermions (or bosons)
this implies that: i) for Ny large enough there always ex-
ists a negative-energy bound state of Ny particles irrespec-
tively of a given particle mass; ii) the particles do not form
stable matter, that is the energy per particle diverges if
N — oo. The condition eq. (1) can be improved if instead
of one cubic box in [21,22] one takes two disjoint cubes of
equal size K1 N Ky = () and requires that

/ v(ry — ry)dridry

ri,ro€Ky

+/ v(r; — ra)dridrs < 0. (2)
ri€K;,ro€Ks

Instead of cubes one could use rectangular boxes. We do
not prove that the bound E(N) < —cN? follows from
eq. (2) explicitly, but the proof practically mimics the
construction below that we use to prove the collapse of
neutron matter with modern nucleon interactions and is
similar to the proof in [22]. Note that the condition eq. (2)
is fulfilled by the following potential. Suppose that v(r)
is continuous, falling off at infinity faster than |r|=279,
where 6 > 0 and besides v(0) = 0 and v(rg) < 0, where
ro is a fixed three-dimensional vector. To see that eq. (2)
with such v(r) can be satisfied one can take two cubes
K o each with the side length L, where K; and Ky have
their centers at the origin and at rg, respectively. Tak-
ing L small enough one ensures that eq. (2) holds. Let
us remark that condition eq. (2) is satisfied by simplified
neutron-neutron pair interactions like Minnesota [24,25]
or Volkov [26,27]. For Minnesota interaction we found a
bound multineutron, which contains 2364 neutrons and
has a nuclear density p ~ 5pg [28].

Now let us consider 2/N neutrons that are described by
the following Hamiltonian:

R2 2N
H= D A+ Vo +Vay =T+ Vo + V. (3)
=1

T 2m <

The kinetic-energy operator T includes the center-of-mass
motion; m is the neutron mass and r; for i = 1,...,2N
are neutrons’ position vectors. The term Vs, = El < Vij
is the sum of two-nucleon interactions given by the Ar-
gonne V18 potential [10]. The term V3, is the three-body
interaction, which can be one of the modern versions of
Mlinois [11] or Urbana [9] three-nucleon interaction; today
these are Urbana IX [29] and Illinois 7 [30]. The anal-
ysis below is restricted to the case of Urbana IX inter-
action, however, the method of analysis and conclusions
fully apply to the Illinois 7 interaction as well. It is be-
lieved [9] that Hamiltonian eq. (3) with Urbana or Illinois
three-body forces describes a stable neutron matter, for
the equation of state of neutron matter based on calcula-
tions using eq. (3), see [31]. The main aim of the present
paper is to show that neutron matter described by eq. (3)
is unstable.
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Fig. 1. The neutrons are placed into two disjoint cubes K, Kq
each with the side length L (subscripts u, d stand for “up” and
“down”, respectively). The upper cube is shifted by a distance
D along the Z-axis with respect to the lower cube.

Below we shall construct the trial function for 2N neu-
trons, which satisfies the Pauli principle and gives the up-
per bound on the ground-state energy of 2/N neutrons de-
scribed by eq. (3). Let us take two cubes K, K4 each with
the side length L and place the first cube at the origin as it
is shown in fig. 1 and the second over the first one so that
the center of K, is shifted by the distance D along the
Z-axis compared to the center of K4. In order to prevent
overlapping of the cubes we require that D > L. The trial
function would depend on three parameters L, D,w > 0,
where w is an integer. Following [21,22] let us first con-
struct N one particle orthogonal wave functions. For any
p=1,2,...and z € R we set

o (2) = { (L/2)~Y%sin (2rpL~'wz) if x €0, L],
P 0 if x¢][0,L] ’
(4)
Let us fix the an integer n in a way that makes the in-
equality n® < N < (n+ 1)3 hold. For each t = 1,..., N
let us choose a triple of positive integers {¢1,t2,t3} so that
1 <ty,ts,t3<n+1and

[th — )|+ [ta — 5] + [ts — t5| #0 for t#¢. (5)

That is all N triples should be different (for example,
triples {1,2,8} and {1,2,7} are different). Using these
triples we define the one particle states for t = 1,..., N
as follows:

fi(x) = @1, (1) @1, (17 )pas (17), (6)

where %, r¥  r* are the Cartesian components of the vec-
tor r.
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Each cube confines N neutrons, which form an excited
state of the Fermi gas. Let us set

VU (ry, ..., ron) i= [fi(r1) fa(r2) - fn(rn)]
x[filtng1 = D) fo(rni2 — D) -+ fn(ray — D)), (7)

where D := (0,0, D) is a three-dimensional vector.

Let Son denote the permutation group for 2N parti-
cles, whose elements g € Son permute only the spatial
coordinates. We define the antisymmetrizer A as

A= mlv)! S (-, (8)

gESan

where 7(g) denotes the parity of the permutation g. Now
we construct the trial function for 2N neutrons as

W =Wa(ry,...,von)[n Din 1)...n 1), (9)

where the spatial part of the wave function is ¥4 :=
V2N)! A

In eq. (9) |n 1) denotes the isospin-spin state of each
nucleon (isospin down for neutron and spin up). In the
fully polarized trial function we set all neutrons into the
state of a neutron with spin up because this simplifies
the antisymmetrization. It is easy to see that ¥, is fully
antisymmetric and normalized because the cubes K,,, K4
are disjoint. By the variational principle

EQ2N) < (a|H|Wa) = (Wa|T|Ta) + (Fa|Vay|Pa)

(W4 [Vap | Wa), (10)

where E(2N) is the ground-state energy of 2N neutrons
described by eq. (3). Let us first consider the contribution
from the three-body term. Substituting the interactions
from egs. (2.1), (2.7) in [9] and using that both cubes are
filled with the same states we get

(W |Vap|Wa)

- ¥

1<i<j<k<2N

- ¥

1<i<j<k<2N

>

1<i<j<k<N

>

1<i<N
N+1<j<k<2N

(Wa|W(ri,rj,rx)|Wa)

(2N)( AT |W (ri, x5, 1) W)

2(2N)! (AW |W (ri, v, vx) [Wrr)

+2(2N)! (AT |W (ri,v5, 1) @), (11)

Here

W(I‘l, Iro, I'3) = 2A2ﬂ- Z{lS(f’lg . f‘13)72f272f3T(7“12)T(T13)

cycl
+6(72)*T(r12) [Y (r13) — T(r13)] + 6(753)°T (r13)
X [Y(T‘lg) — T(T’lg)] + 2 [Y(T’lg) — T(T’lg)]
x [Y(r13) — T(r13)] } + U ZTQ(T12)T2(T13),

cycl

(12)



Page 4 of 8

where > eyel denotes a sum over cyclic permutations of the
indices {1,2,3} and r;; :=r; — rg, ri := |rix| and T =
ri/|rikl. The functions T(r),Y(r) are given in egs. (2.2),
(2.3), (A.1) (A.2) in [9], namely,

e HT _p?
v =" [1-e], (13)
. 3 3 e KT b2 2

where = (mx, +2m,, )c/(3R) is the average of the pion
masses and b = 2.0fm~2. Expanding the exponents it is
easy to see that T'(0) = Y (0) = 0, which means that the
whole three-body interaction vanishes if three nucleons
occupy the same position in space. For Urbana IX inter-
action the values of the constants appearing in eq. (12)
are Agr = —0.0293 MeV and Uy = 0.0048 MeV.

Now we fix the parameters L, D of the trial function
in the following way. Let us define the constants

Bl Z:/ W(rl,rg,rg)drldrgdrg (15)
ri,ro,r3€ky

32 = / W(I‘l, ro, I'3)dI‘1dI‘2dI‘3
ri €Ky

ro,r3€Kqy

= / W(ry1,r2 + D,r3 + D)dridradrs. (16)
ri,ra,r3€Ky

We set the values of L, D so as to make the following
inequality holds:

Q:=

To see that eq. (17) can be fulfilled it is not necessary to
calculate the integrals in egs. (15) and (16) numerically.
Note that W (ry,ra,r3) is a continuous function. For L
small enough the integrand in eq. (15) would be close to
W(0,0,0) = 0, whereas the integrand on the right-hand
side of eq. (16) would be close to W(0,0,D). The graph
of the function W(0,0,D), which depends on D is shown
in fig. 2. One can set D = 1fm in order to ensure that
the integrand in eq. (16) would be less than —12MeV.
Therefore @@ > 0 if L is fixed sufficiently small though
different from zero.

It remains to fix the last parameter w in the trial func-
tion. For convenience of notation let us introduce the nine-
dimensional vector s = (ry,re,r3) so that s € RY has
the components s = (s1,...,59) = (r{,r{,...,r§,r5). Let
D C R? denote the subset of all non-zero Vectors with inte-
ger coordinates (that is for any d € D all d; fori =1,...,9

are integers and Z?:l d? #0). And let us define

—(Bs + (1/3)By) > 0. (17)

L L
7 (w) = csllelg Re /0 dsy . ../O dsoW (s)

X exp (iQWL_lw(d . S))‘ (18)

Note that W(ry,ra,r3) is square integrable in the cube,

that is
L L )
/ dsy .. / dsg|W (s)|” < oco. (19)
0 0

Eur. Phys. J. A (2014) 50: 118

6 ;
4
ol
0
=
(]
S 4
<
= -of
8t
~10f
—12f
14 ‘ ‘ ‘ ‘ ‘
0 05 1 1.5 2 25 3
D (fm)

Fig. 2. The plot of the function W(0,0,D) (where D =
(0,0, D)) versus parameter D.

It is a trivial consequence of the Bessel’s inequality that
Y (w) — 0 for w — o0, since the integral in eq. (18) is pro-
portional to the Fourier coefficient of the function W(s).
Similarly, we define

= sup Re/ dsy .. / d39W
deD

x exp(i2nrL~'w(d - s)) ',

T3 (w)
(20)

where by definition W(s) = W(ry,ry + D,r3 + D), and
Yo(w) — 0 for w — oo as well. Therefore, we can fix w
requiring that

(3° +2°)[N(w) + La(w)] < Q/2,

where @ is defined in eq. (17).

Now we turn back to eq. (11). On the right-hand side
(rhs) of eq. (11) the antisymmetrization operator eq. (8)
enters two times. It is easy to check that in the first term
on the rhs of eq. (11) only 6 permutations g in eq. (8)
produce a non-vanishing contribution. These are 6 permu-
tations, which permute the indices {i, 7, k} and leave all
other 2N —3 indices unaffected. By the same arguments in
the second term on the rhs of eq. (11) only 2 permutations
make non-vanishing contributions, these permute the in-
dices j, k and do not permute the other 2N — 2 indices.
Thus eq. (11) can be rewritten as

2. 2

1<i<j<k<N g€S; ;. k)
></ firi) fi(rg) fi(rr)

r; j x€Kq
xW(ri,rj,rk)fg(‘)(ri)fg(j)(rj)fgw)(rk)dridrjdrk
1o / ) [ (05) ()

1<1<N rijkE€Kaq

N+1<j<k<2N
— [ (e) fr(er) £ (xr) fr(x;)]
xW(r;,rj + D,r; + D)dr;dr;dry.

(21)

(@a|Vap|Fa) = 2 1))
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In eq. (22) Sy 5k} denotes the permutation group of the
indices {i, j, k}, which consists of 6 permutations. We fo-
cus on the first integral on the rhs of eq. (22). Let us first
consider the identical permutation g = 1, that is we set
9(i) =1, 9(j) = J, g(k) = k. The integral in the considered
term for g = 1 equals

/ f?(ri)ff(rj)f,g(rk)W(ri, rj,ry)dr;dr;dr, =
r; i kEKq

(2L)°Re /OL dsy - --/OL dsgWW (s)

“lwsy —47rii1L71wsl]

X[2 _ 647TZ’L1L —e

.. —1 .. —1
X[Q o 6471'212L wsy 67477212[/ wsz]

Amiks L twsg —47rik3L71w39]
b

X+ x[2—e —e (23)
where we have used the explicit expression for one-particle
wave functions eq. (4). Now we expand the product of
terms in square brackets and use eq. (15) and eq. (18) to

obtain the upper bound

/ F2(00) £2005) F2(0) W (s, 15, )l
rij rEKq

< LB+ (3° - 1) LT (w) (24)
Indeed, after expanding the product in eq. (23) we would
obtain 3? terms. 3° —1 terms would contain at least one ex-
ponent function with a non-zero argument and thus each
of these terms can be estimated using eq. (18).

In a similar way we estimate other terms in eq. (22),
which correspond to permutations g # 1. Substituting the

explicit expressions for one-particle wave functions we get

(—1)"® / L) e W ()
X fo(iy(Ti) fo(3) (x5) fo(ay (xie)dridrydry, =

L L
(—1)“(9)(—2L)_9Re/0 dsl---/o dsgW (s)

o1 o s 7 —1
x[€27r111L wsl_e 2mit L wsl]

27iga (k)L™ twsg

_ e—Qﬂigz(k)LileS}

X...X[e

27migs (k)L™ twsg 6727rigg (k)L

x[e Cwso), (25)
Because g # 1 we have that either g(i) # ¢ or g(j)
Without loosing generality we can assume that g(z) ;é i
amd, hence, gy (1) i1 |+ |ga (i) —iz|+|g (i) —is| # 0. Again,
w1th0ut loosing generality let us assume that g (¢ ) # 1i7.
After expanding the product of square brackets in (25)
we would obtain 2'® terms, each of them Would con-
tain one of the four terms: eXp{27mL Ywliy £g1(i sl} or
eXp{ 2mi L wliy g1 (i 81} In none of the four cases the
argument of the exponent vanishes, which due to eq. (18)
leads to the upper bound

SR O TSTACSIOTAY

X fo() (T5) Foy () dridr;dry, < 2°L797 (w). (26)
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We use the same method to estimate the integrals in the
last term in eq. (22), which results in the upper bounds

/ F2(00) £2(x5) F2(0) W ()l dr, <
rijkE€EKq

L79By + (3% = 1) LTy (w) (27)
and
o O LT ACATALATAY
xW (s)dr;dr;dry, < 2°L7975(w). (28)

Finally, using eqs. (22)—(28) we estimate the contribution
of the three-body term as follows:

<@A|V3b|@A> < 2L~?
x> {Bi+ 3% +5x2 1) (w)}

1<i<j<k<N
+207° Y B+ (3°+2° - )Ny(w)} =2L7°
N+11§§;§1€V§2N
x [{Bl +(32+5x2° -~ 1) (w)} NN - 16>(N —2)
N%(N -1
+{B+ (37 +2° - )hr(w)} % (29)

Now using eq. (21) we get
(Wa|Vay|Wa) < —QL™ON® + O(N?). (30)

The contribution from the kinetic-energy term can be es-
timated as follows:

(WA|T|Wp) = (WaA|T|Wa) = (2N) (AT |T|¥rr)
n+1 n+1n+1
= (| T1¥r) < 2(27wL D)2 S SN (@2 4 2 4 82
i=1 j=1 k=1

— (2rwL ) (n+1)*(n +2)(2n + 3)
< (2rwL 1)} (NY3 4 1)3(NY/3 4 2)

><(2N1/3 +3) = O(N°/3). (31)
We have used that in the sum in eq. (8), which enters
the expression (A¥r|T W), only g = 1 produces a non-
vanishing contribution. It remains to consider the contri-
bution from V5. Providing a very rough upper bound on
(W, |Vap|P4) we shall prove that this term contributes in
eq. (10) as O(N®/3). In this case due to eqgs. (30), (31) we
would have

E(2N) < —QL™°N?® + O(N®/3), (32)
which proves the instability of neutron matter: the energy
per particle E(2N)/(2N) diverges for large N at least
as fast as N2. The Argonne v;g pair potential [10] con-
tains 18 operators and the functions in front of these op-
erators are finite. Thus all two-body interactions except
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the terms containing the operators Lm’ (L;j - S”)2 and
(Lij -Sij) can be bounded by a constant V§ and contribute
to (W, |Vap|Wa) as VoN@2N — 1) = O(N?). To derive an
upper bound on (LD \ng\LDA> it suffices to consnder the con-
tribution from the interaction Vo 3~, Zj, where Vp > 0
is a constant equal to the maximum of the function in front
of the L?j term. Other interactions containing the terms
(L;j-S;;)? and (L;; - S;) can be considered similarly. The
relative orbital angular momentum of the particles ¢, j is
L;; = (1/2)(r; —r;) x (pj — Ps), where p;, = —iAV,,. The
square of its z-component can be estimated as follows:

(L) = 207 =m0t — ) — (0 =)0 — 2]
< 5 [0 = 1920 — B + (Y — )25 0]
< (rf =P (@D + 1)) + () =) ((05)° + (0F)?).
(33
Remark

The inequalities in eq. (33) are understood as operator
inequalities. For self-adjoint operators A, B the inequality
A < B means that (f|A|f) < (f|B|f) for all admissible
/. In eq. (33) we have used the operator inequality (A —
B)? < 242 + 2B2, which easily follows from the obvious
(A + B)? > 0. Similarly estimating the squares of the
x, y-components of L;; we finally obtain

Vo(@al Y LZ[Wa) < 2(L + D)*Vo(Wal Y (p} +P3)[¥a)
1<J 1<j

< 2(L + D)*Vo(2m) 2N)(#a|T|Wa) = O(N®/?),  (34)

where we have used eq. (31) and the fact that spatial co-
ordinates are bounded by the dimensions of the cubes
K, ,Ky. To be consistent, let us consider the interac-
tion terms that contain spin-orbit-squared and spin-orbit
terms. Using that the trial function is fully polarized (all
spins are up) the contribution from spin-orbit-squared
terms can be bounded as

Uo Y (Fal(Lij - Sij)*[Wa)
i<j

=0 Z@Al (Lf + (L85 + L?]S;yj) W4)
1<J

< Uy (Wl ()" + 2 (L5;85) +2 (LY5%)" Wa)
1<J

=Uo Z@ML?J‘@M = O(N®/%), (35)
1<J

where Uy is a positive constant equal to the maximum
of the function in front of the (L;; - S;;)? term. Similarly
the contribution from spin-orbit terms can be bounded as
follows:

U 3 |(Pal(Ly - Sipla)] < Ug 3 (04 L 1)) ¥

1<j 1<j

<U0< D] S LZ |Fa) )

1<J

N

(N(2N —1))2 = O(NF),(36)
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where U] is a positive constant equal to the maximal ab-
solute value of the function in front of the (L;; - S;;) term.
In (36) we have used twice the Cauchy-Schwarz inequal-
ity. Summarizing, we find that eq. (32) holds. Preliminary
estimates [28] with AV6’ potential [32] instead of AV18
show that a bound multineutron with negative energy
contains less than 4500 neutrons. We also come to the
conclusion that the matter-like state of N neutrons for
N large is quasistable with modern forces (under matter-
like we mean the state described in [31]). However, with
large N (N g 1000) there appears another deep energy
minimum, which is structurally very different from the
matter-like state. This minimum is unphysical because it
leads to densities, which grow to infinity with large N. In
the subsequent analysis one should analyze the probabil-
ity of transition into unphysical minimum. But necessary
changes in the repulsive core of 3-body forces can be easily
introduced in order for this unphysical minimum to disap-
pear. In particular, Urbana VI three-body force does not
create such unphysical minimum.

A few remarks are in order. Taking a fully polarized
trial function in (9) was merely a technical simplification,
which allowed treating antisymmetry of a trial function
in a more lucid fashion. An non-polarized trial function
leads to even larger estimate of |E(2N)|! Another techni-
cal trick is to set neutrons into a highly dense state in the
trial function. From the proof, which uses the variational
principle, one may get a false impression that we apply
the modern nuclear Hamiltonian to a media with extreme
densities, which do not occur in Nature. This is, however,
not true. Instead we prove that ultra high densities in-
evitably result when N neutrons are in the ground state
and N is large! We do not claim that such densities ap-
pear in Nature. On the contrary, we claim that the force
has to be corrected in order to avoid the appearance of
unphysical densities. That is we demonstrate mathemat-
ically that the repulsive core in the Urbana and Illinois
3-body interactions is wrong, since it leads to the growth
of the binding energy according to the law of N3.

It is important to show that the corrections of the
3-body interaction that are required for stability of neu-
tron matter are substantial. For that let us consider a
hypothetical change in the Urbana IX interaction, which
can be written as

Vap = Vap + Vang, (37)
where V3, is defined as above and Vazny g has the form of
the repulsive term that is used in Urbana VI interaction,

see eqs. (2.8)—(2.10) in [9]. That is
Vanr(ri,ra,r3) = UcW(ria)W(ris)W(res),  (38)
where U¢ is a constant and
W(r) = [1+exp((r— R)c™ )] - , (39)

with R = 0.5fm and ¢ = 0.2fm. The necessary stability
condition in the integral form, which is derived from (17),
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reads

1 1
gBl + By + 3 / Vanr(r1, r2, r3)dridradrs

ri,ra,r3€kKy

+/ Vanr(r1,re + D, r3 + D)dr;draodrs > 0,
ri,ro,r3€ Ky

(40)

where integrals Bj o are given in egs. (15) and (16), re-
spectively. Inequality (40) should hold for all values of the
constants L, D > 0 such that D — L > 0 (the cubes in
fig. 1 should remain disjoint). Let us set D = 0.9fm so
that W(0,0,D) ~ —13.7MeV, see fig. 2. Taking L — 0
we immediately obtain from (40) the minimal value for
the constant Uex in (38), which is Us > 51 MeV. Vary-
ing the sizes of the cubes one may obtain a better value
and the minimal value of Ug indeed becomes larger if one
constructs an non-polarized trial function.

Stability, radius and masses of neutron stars are largely
governed by the equation of state (EOS) of nuclear matter,
see, e.g. [31,33]. The present result shows a dramatic effect
of the repulsive core on the EOS at high densities. Let us
note that recently there were calculations of neutron mat-
ter [17] with potentials derived from chiral perturbation
theory [34,35]. We were not able to reach the conclusions,
whether such instability occurs for such interactions; it is
important to generalize the stability condition derived in
this paper to interactions in momentum space like in [34].

3 Summary

It is a standard practice to study the neutron matter by
considering the ground state of N neutrons, which are
set in an external trap [36]. We prove that the neutrons
would collapse with large N if one uses modern 3-body
forces. The mathematical proof is absolutely rigorous, the
collapse is derived from the Schrodinger equation. The
reason for the collapse is the presence of form factors in
the interactions, which make 3-body force vanish when 3
nucleons occupy the same position is space. The neutron
density is most probably zero for N < 100 (100 neutrons
seem to have no bound states). As N increases the first
bound state of N neutrons emerges at some point and the
density starts growing with N. This happens without any
external compression and it is a mathematical fact. By us-
ing the mathematical approach we come to the conclusion
that in order for the modern nuclear Hamiltonian to work
one should constrain the number of particles. Otherwise
for N Z 1000 unphysical effects begin to dominate. This
problem is easily cured by changing the phenomenolog-
ical repulsive core of the 3-body force, for example, Ur-
bana VI interaction (an older version of Urbana 3-body
force) does not have this problem. Let us stress again that
the repulsive term in the Urbana interaction is isotopically
invariant. Thus its corrections would affect normal nuclei,
symmetric nuclear matter, etc.

In conclusion let us give a simple explanation why the
collapse takes place (this explanation was proposed by one
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of our colleagues). Put n = N/2 neutrons in one blob, and
the other n = N/2 particles in a second blob, both of vol-
ume V very small. A free gas wave function in each blob
would give you the kinetic energy n times the Fr (Fermi
energy), or proportional to n°/3. Since T'(r) and V (r) in
Urbana and Illinois become small for small r, for small
blobs, the only three-body interaction is when 1 particle of
a triplet is in one blob, and the other two are in the second
blob. Pick a distance between the blobs where this three-
body interaction is attractive. You then get n? triplets,
multiplied by this attractive interaction. The Argonne po-
tential has bounded pair interactions, which contribute as
n? but it also has L? terms. These are proportional to
p?, or for small blobs, p% (Fermi momentum), i.e. propor-
tional to n2/3. There are 2n? of these terms, so this gives
an order n®/3 bound. The other terms have smaller expo-
nents. Since n®/3 < n3 for large n, you can always make
the triplet term dominate, which leads to the collapse of
the system.
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