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Abstract. Nonlinear thermoacoustic self-excited onset was numerically studied in this work. A lattice
Boltzmann model for viscous compressible flow and the implicit-explicit finite difference method were used
to develop a solver. Nonlinear onset in an open-open Rijke tube with a constant-temperature stack was
simulated with the solver. Based on the numerical results, overall onset process and self-excited standing
wave in the Rijke tube are observed. The length of the Rijke tube along the x-direction covers a 1/4
wavelength of the standing wave and the main component of this standing wave is 171.2 Hz. These results
agree well with the theoretical prediction. Instantaneous velocity and temperature fields at several phases
under the limit cycle are presented and discussed. The maximal Mach number is about 0.035, indicating
that the flow in the Rijke tube is a low Mach number compressible flow. This solver can also be applied for
simulations of some other complex flows, such as the flow in porous media stack in thermoacoustic engine.

1 Introduction

Thermoacoustics can be simplistically defined as the physics of the interaction of thermal and acoustic fields [1],
and has been attracting more and more attention as a major technology in the development of high efficient energy
conversion/generation systems. However, the nonlinear acoustic effect, the space and time multi-scale effect, the
low Mach number compressible flow and the flow within porous media in the thermoacoustic engines make it very
complicated in theory. Therein, self-excited thermoacoustic onset is one of the most typical nonlinear phenomena.
Thermoacoustic engine can only achieve the conversion of thermal energy to mechanical energy after the process
of thermoacoustic onset. As a result, thermoacoustic onset has gotten more and more attention in the academic
community [2–8]. An example of the thermoacoustic nonlinear onset is the Rijke tube [6], which is a straight tube
with heated stacks placed inside. Understanding of gas oscillating patterns in the Rijke tube is of both fundamental
and practical importance. Both the nonlinear acoustic effect and the low Mach number compressible flow can be
observed in the Rijke tube. Theoretical and experimental investigations on the Rijke tube can be found in refs. [9–
12] and references therein. To the best of our knowledge, numerical studies on it can be classified into two different
categories. For the first one, only the region inside the Rijke tube is considered as the computational domain. Hantschk
and Vortmeyer firstly simulated the Rijke tube with this idea [2,3]. The temperature of the stacks in the Rijke tube
was considered as a constant in their simulations. Then, Chatterjee et al. investigated the occurrence of combustion
instabilities in a Rijke tube type of combustor with the same idea [12]. For the second one, both the region inside the
Rijke tube and some additional region outside are considered as the computational domain. Physical boundaries of
the open sides of the Rijke tube are then treated as internal region in the computational domain. Entezam et al.’s
study belongs to this category [4]. In comparison with these two categories, the first one needs more attention on the
treatment of the boundary conditions, whereas a much more computational resource is needed for the second one,
due to the extension of the computational domain. At the same time, all simulations on the Rijke tube mentioned
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above were performed using commercial softwares with conventional computational fluid dynamics (such as the finite
volume method and finite difference method). Specifically, Flow-3D was used in ref. [4], and Fluent was used in the
other references.

The lattice Boltzmann method (LBM) is an alternative and promising numerical method for studying thermoa-
coustic problems. The LBM was originated in the wake of its ancestor, the lattice gas automata method, and improved
greatly in response to its initial drawbacks [13]. The LBM was first introduced by McNamara and Zanetti [14], and
is different from the conventional numerical methods solving the macroscopic governing equations, e.g. Navier-Stokes-
Fourier (NSF) equations for the conserved fields. Based on the kinetic theory, the LBM simulates fluid flows by tracking
the evolution of particles taking on a few discrete velocities in discrete space at discrete time steps. It can easily model
fluid flows with complicated boundary conditions. This means the LBM provides a method to obtain flow streams and
heat transfer patterns for complicated systems (in the thermoacoustic engine, such as flow in porous media stack and
low Mach number compressible flow) from the microscopic and kinetic level [15–20]. Other merits of the LBM are the
localization and easy implementation of its computational scheme. Considering its advantages mentioned above, we
adopted the LBM to study phenomena systematically in the thermoacoustic engine. Our previous efforts can be found
in refs. [21,22], in which we studied the gas oscillation in a resonator by the standard LBM and the finite difference
LBM (FDLBM), respectively.

This work presents a numerical study on the nonlinear self-excited thermoacoustic onset in a Rijke tube with the
LBM model for viscous compressible flow [23] and the implicit-explicit (IMEX) FDLBM [24] presented in our previous
papers. The numerical solver used here is developed with the FORTRAN language. This paper is organized as follows.
In sect. 2, details of the LBM model for viscid compressible flow and the IMEX FDLBM are introduced. In sect. 3,
physical model of the Rijke tube and simulation details are presented. Numerical results and corresponding discussions
are given in sect. 4. A brief conclusion of the present study is given in sect. 5.

2 Formulation of the LBM

In our previous work, a LBM model based on a polynomial kernel function in the phase space was developed for viscous
compressible flows with flexible specific-heat ratio and Prandtl number [23]. Density distribution function (DF) f and
total energy DF h are used in this model. Corresponding equilibrium DFs are obtained from the discretization of
the polynomial kernel function with Lagrangian interpolation and be coupled via the equation of state for gas. The
evolution equations of these two DFs are the discrete Boltzmann equations with the BGK approximation

∂fi

∂t
+ ei · ∇fi = − 1

τf
(fi − f eq

i ) , (1a)

∂hi

∂t
+ ei · ∇hi = − 1

τh
(hi − heq

i ) +
ei · u
τhf

(fi − f eq
i ) , (1b)

where fi and hi are the discrete density DF and the discrete total energy DF, respectively; f eq
i and heq

i are their
corresponding equilibrium DFs; ei is the discrete velocities; i = 0, . . . ,N − 1, N is the total number of discrete
velocities; t and u are the macroscopic time and velocity, respectively; τf and τh are the relaxation times for momentum
and energy transport, respectively, and τhf = τhτf/(τf − τh).

A two-dimensional version of this model with a D2Q13 lattice (see fig. 1, N = 13) is given as below. The discrete
velocities of the D2Q13 lattice are

ei√
RTc

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0), i = 0
cyc : (±1, 0), i = 1, 2, 3, 4
cyc :

√
2(±1,±1), i = 5, 6, 7, 8

cyc : 2(±1, 0), i = 9, 10, 11, 12

, (2)

where cyc indicates the cyclic permutation; Tc is the characteristic temperature. In order to avoid extrapolation,
|u|+ c <

√
2RTc should be ensured, where c is the effective peculiar velocity and

√
2RTc is the shortest distance from

the origin to the edges of the lattice. R is the gas constant and T is the temperature of gas.
The discrete equilibrium density DF f eq

i of this model is defined as a function of the macroscopic density, velocity
and temperature as

feq
0 (u, v) =

ρ

4

[
4 − 10T + 10T

2
+ (10T − 5)(u2 + v2) + u4 + 4u2v2 + u4

]
, (3a)
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Fig. 1. Configuration of the D2Q13 lattice.

f eq
1 (u, v) =

ρ

6
[
(4 − 6T )(T + u + u2) − 3T (u2 + v2) − (u + u2)(u2 + 3v2)

]
, (3b)

f eq
5 (u, v) =

ρ

4
[
(T + u + u2)(T + v + v2)

]
, (3c)

feq
9 (u, v) =

ρ

24

[
−T + 3T

2 − (2 − 6T )u − (1 − 6T )u2 + 2u3 + u4
]
, (3d)

and

f eq
2 (u, v) = feq

1 (v, u), feq
3 (u, v) = feq

1 (−u, v), feq
4 (u, v) = feq

1 (−v, u), (3e)
feq
6 (u, v) = feq

5 (−u, v), feq
7 (u, v) = feq

5 (−u,−v), feq
8 (u, v) = feq

5 (u,−v), (3f)
feq
10 (u, v) = feq

9 (v, u), feq
11 (u, v) = feq

9 (−u, v), feq
12 (u, v) = feq

9 (−v, u). (3g)

Here, feq
i (u, v) is the abbreviation of feq

i (ρ, u, v, T ); T , u and v are defined as T = T/Tc and (u, v) = (u, v)/
√

RTc.
feq
2 (u, v) = feq

1 (v, u) means feq
2 (u, v) is calculated with the same form of feq

i (u, v), and the locations of the parameters
in feq

i (u, v) are permuted. Similarly, the discrete equilibrium total energy DF heq
i is

heq
0 =

ρRTc

24
[
A0 + A1(u2 + v2) + A2(u4 + v4) + A3u

2v2 + 3(u6 + v6) + 15(u4v2 + u2v4)
]
, (4a)

heq
1 =

ρRTc

12
[
B0 + B1u + B2u

2 + B3v
2 + B4u

3 + B5uv2 + B6u
4 + B7u

2v2 − 3Tv4

− (u + u2)(u4 + 3v4 + 4u2v2)
]
, (4b)

heq
5 =

ρRTc

24
[
C0 + C1(u + v) + C2(u2 + v2) + C3uv + C4(uv2 + u2v) + C5u

2v2 + 3T

× (u3 + v3 + u4 + v4) + 3uv(u2 + v2 + u3 + v3) + 3u2v2(u + v + u2 + v2)
]
, (4c)

heq
9 =

ρRTc

48
[
−G0 − G1u − G2u

2 − G3v
2 − G4u

3 − G5uv2 − G6u
4 − G7u

2v2 + (2u3 + u4)(u2 + v2)
]
, (4d)

where coefficients A0 . . . A3, B0 . . . B6, C0 . . . C4, G0 . . . G7 are given in table 1. Besides eq. (4), other parts of the discrete
equilibrium total energy DF can be obtained with the same relations shown in eqs. (3e)–(3g). It can be found that
eqs. (3) and (4) are polynomials up to the fourth and sixth order of the macroscopic velocity u, respectively.
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Table 1. Coefficients in the discrete equilibrium total energy DF heq
i given by eq. (4).

i Coefficients

0
A0 = (24 + 12K − 120T − 30KT + 160T

2
+ 30KT

2
)T , A1 = 12 − 120T − 15KT + 270T

2
+ 30KT

2

A2 = −15 + 60T + 3KT , A3 = −30 + 180T + 12KT

1
B0 = (B1,1 + 4T )T , B1 = (16 + 4K − 36T − 6KT )T , B2 = (28 + 4K − 78T − 9KT )T ,

B3 = B5T , B4 = B6 + 5T , B5 = 4 − 30T − 3KT , B6 = 4 − 19T − KT , B7 = B5 − 12T

5
C0 = (16 + 3K)T

3
, C1 = C3T , C2 = C4T , C3 = C4 − 9T , C4 = (27 + 3K)T , C5 = C4 + 9T

9
G0 = (G1/2 + 2)T , G1 = (8 + 2K − 36T − 6KT )T , G2 = (7 + K − 51T − 6KT )T ,

G3 = (1 − 3T )T , G4 = 2G6 + 10T , G5 = 2 − 6T , G6 = 1 − 16T − KT , G7 = G5 − 1

The macroscopic density ρ, velocity u, temperature T can be calculated in terms of the DFs as follows:

ρ =
∑

i

fi, (5a)

u =
∑

i

fiei/ρ, (5b)

T = 2

(
∑

i

hi/ρ − |u|2/2

)

/bR, (5c)

where b is a constant related to the specific-heat ratio γ by γ = (b + 2)/b. With the Chapman-Enskog expansion, the
NSF equations can also be derived from moments of eq. (1) in the limit of slow variations in space and time. The
obtained macroscopic equations are given as follows:

∂ρ

∂t
+

∂ρuα

∂xα
= 0, (6a)

∂ρuα

∂t
+

∂ρuαuβ

∂xβ
+

∂p

∂xα
=

∂P ′
αβ

∂xβ
, (6b)

∂ρE

∂t
+

∂(ρE + p)uα

∂xα
=

∂

∂xβ

(

λ
∂T

∂xβ
+ P ′

αβuα

)

, (6c)

and

p = ρRT, (6d)

P ′
αβ = μ

(
∂uα

∂xβ
+

∂uβ

∂xα
− 2

D

∂uχ

∂xχ
δαβ

)

+ μB
∂uχ

∂xχ
δαβ , (6e)

where μ, μB and λ are the dynamic viscosity, the bulk viscosity and the thermal conductivity, respectively, and defined
as

μ = τfp, μB = (2/D − 2/b)τfp, λ = τhcpp. (7)

Here, D is the spatial dimension; cp = (b + 2)R/2 is the specific heat at constant pressure and the Prandtl number is
Pr = μcp/λ = τf/τh.

To solve eq. (1) numerically, the IMEX FDLBM [24] is adopted. It has been demonstrated that, by using this
method, problems (no matter stiff or not) can be integrated quickly with moderate Courant-Friedriche-Lewy (CFL)
number, which is defined as CCFL = Δt · max(eix, eiy)/min(Δx,Δy). Here, Δt is the time spacing; Δx and Δy are
the mesh spacing steps in the x- and y-direction, respectively. Details about the IMEX Runge-Kutta scheme and
the difference schemes in the LBM can be found in ref. [24]. Moreover, one may notice that the compressible mode
originally developed by Kataoka and Tsutahara [25] was used in ref. [24]. A D2Q16 lattice was used in that model and
a variable related to the rest energy, which comes from the internal motion of molecules, was introduced to control
the specific heat. Compared with the D2Q16 model, the model with double distribution functions used here is more
stable in a large range of Mach number, as discussed in ref. [23].
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Fig. 2. Schematic description of the Rijke tube.

3 Physical model and simulation details

A numerical simulation was performed for the nonlinear self-excited onset in a Rijke tube via the LBM solver introduced
in sect. 2. A Rijke tube with L = 0.9m in length and two openings is considered, as shown in fig. 2. A stack with
cross-section 0.05m × 0.02m and constant temperature Ts = 1000K is placed at x = 0.225m (= L/4). Considering
a realistic condition in the experiment, the heated air in a vertical Rijke tube will float and fresh air in the outside
environment will be inhaled continuously. A constant flow with velocity uin = 0.1m/s in the x-direction is prescribed
at the left inlet (x = 0m) to mimic the inflow of fresh air. Symmetric boundaries are applied in the y-direction (upper
and lower) to mimic various parallel stacks. Then, a standing wave with a wavelength of 4L will be excited in this
open-open Rijke tube due to the thermoacoustic effect.

In the simulation, only the region inside the Rijke tube is considered as the computational domain. We assume
that the fluid is air under normal condition, and use ρ0 = 1.165 kg/m3, T0 = 293K, μ = 1.86 × 10−5 kg/(m · s),
R = 287 J/(kg · K) and P0 = ρ0RT0. b = 5 is set to get γ = 1.4. Pr is set to be 0.071, which is one tenth of the normal
value 0.71 of the air, for the purpose of accelerating heat convection. A mesh with Nx × Ny = 900 × 17 is adopted
after mesh-independent test, where Nx and Ny are the lattice numbers along the x- and y-direction, respectively.

Boundaries are treated carefully in the solver. At the inlet (x = 0m), the velocity and temperature of the air
are given as uin and T0, respectively, and the pressure is extrapolated from that of the internal nodes. At the outlet
(x = 0.9m), both the velocity and temperature are extrapolated from the internal corresponding values, and the
pressure is set to be constant P0. Densities on both left and right boundaries are calculated with the equation of the
state for gas. The nonequilibrium extrapolation method [26] is then applied to calculate unknown DFs on the two
boundaries. In the y-direction, the symmetric boundary condition is adopted at both the upper and lower boundaries
and the DFs on the boundary nodes can be obtained directly from the ones on the closest internal nodes.

The tube is initialized with static air. The pressure is uniform and set to P0. The temperature in the left region
(0 ≤ x ≤ 0.2m) of the Rijke tube is T0, and the other region (T0 + Ts)/2. Moreover, variable properties of the air are
considered. The viscosity and the thermal conductivity change linearly with the change of the temperature.

Based on the previous research [5], we believe that for simulation of the thermoacoustic onset, time step and
numerical scheme for time marching are main factors effecting numerical stability and numerical resolution. However,
much smaller time step and higher-order time scheme lead to considerable computational requirement even for modern
computer. As a result, the second-order IMEX Runge-Kutta scheme [24,27] and the second-order upwind difference
scheme [23] are adopted for the time and space discretizations, respectively. Some important parameters are Tc = 10T0,
and CCFL = 0.734 with δt = 4 × 10−7 s. Shared memory programming with OpenMP was used to develop our solver.
As to the current Rijke tube, the computation time used is about 4 days with 8 Intel processors (2.33GHz).

4 Results and discussions

Nonlinear onset process is presented firstly. Figure 3 gives the time histories of the pressure and velocity at point A
(x = 0.225m, y = 0.003m) and provides an idea of the overall onset process. As the initial state of the Rijke tube is not
the equilibrium one, the amplitudes of the pressure and velocity will decrease in an initial period lasting about 0.5 s.
Then a rapid increase in the oscillation amplitudes can be found and nonlinear onset occurs due to the thermoacoustic
effect. After t = 3.5 s, the amplitudes of the pressure and velocity no longer change and the Rijke tube reaches its
corresponding limit cycle state.

Figure 4 presents the time histories of pressure and temperature at point B (x = 0.575m, y = 0.003m). In
comparison with figs. 4(a) and 3(a), the pressure at point B has similar developing process as that at point A.
However, the amplitude under the limit cycle condition at point A (upper the stack) is larger than that at point B
(right side of the stack). From fig. 4(b), it can also be found that temperature at point B various very small in the
initial period (0–0.5 s). After the initial period, heat convection is enhanced due to the thermoacoustic effect and the
air at the right side of the stack was heated. Then, the corresponding temperature rises rapidly and oscillates small
around 960K under the limit cycle condition.
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Fig. 3. Time histories of the (a) pressure and (b) velocity at point A (x = 0.225 m, y = 0.003 m).

Fig. 4. Time histories of the (a) pressure and (b) temperature at point B (x = 0.575 m, y = 0.003 m).

Flow characteristics under the limit cycle condition are presented and discussed below. The wave forms of the
pressure and velocity under the limit cycle condition at point A (x = 0.225m, y = 0.003m) are presented in fig. 5.
It can be observed that the phase difference between the pressure and velocity is about 1/4 cycle (or π/2), as to be
expected for standing wave. Furthermore, fast Fourier transform (FFT) of the pressure signal at the same location is
carried out. It can be observed from fig. 6 that the main component of the pressure signal is 171.2Hz. Considering most
air in the Rijke tube will be heated to 960K, the sound speed in the Rijke tube is about 621.1m/s. The fundamental
frequency of the air system is then 172.5Hz in theory. It can be seen that numerical results agree well with the
theoretical prediction.

Figure 7 refers the instantaneous distributions of the pressure and velocity along the x-direction of the Rijke tube
under the limit cycle condition at y = 0.003m. Eight phases (moments) in an oscillating cycle are presented. The state
with averaged pressure and minimal velocity is considered as the phase 0. From fig. 7, it can be seen that the physical
parameters of the air are fluctuant, and inverse flow can be found due to harmonic vibration of the air. Figure 7 also
indicates the length of the Rijke tube along the x-direction covers a 1/4 wavelength of the standing wave. The wave
loop of the oscillating pressure and wave node of the velocity are located at the left inlet of the Rijke tube, whereas the
wave node of the pressure and wave loop of the velocity are located at the right. Moreover, one can see from fig. 7(b)
that the velocities in the region of 0.2m ≤ x ≤ 0.25m are larger than those in the other region due to the existence
of the stack, which narrows the flow channel.

Figures 8 and 9 present the temperature fields and the velocity fields near the stack when the air volume is under
the limit cycle condition. From fig. 8, it can be found that the temperatures at different phases in the region on the left
side of the stack are much smaller than 1000K, and will increase with the decrease of the distance from the stack. At
the same time, the temperature in the region on the right side of the stack is almost 1000K due to the heating of the
stack. Moreover, at a given location, the variation of the temperature with the phase (time) is limited. On the other
hand, the velocity fields are very complex and the variation of the velocity field with the phase (time) is significant.
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Fig. 5. Pressure and velocity waveforms at point A (x = 0.225 m, y = 0.003 m) under the limit cycle condition.

Fig. 6. FFT of the pressure signal at point A (x = 0.225 m, y = 0.003 m) under the limit cycle condition.

Fig. 7. Instantaneous distributions of the (a) pressure and (b) velocity along the x-direction of the Rijke tube at y = 0.03 mm
under the limit cycle condition.
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Fig. 8. Instantaneous temperature fields near the stack at four phases under the limit cycle condition. (a) 0; (b) π/2; (c) π; (d)
3π/2. (x/m, T/K).

It should be noted that the velocity of the air in the Rijke tube is a combination of the inlet flow velocity (0.1m/s) with
right direction and the oscillating velocity of the air volume (changing direction periodically). In fig. 9(a) at phase 0,
the oscillating velocity in the x-direction (right to left) is much larger than the given inlet velocity in +x-direction (left
to right). As a result, the direction of the main flow near the stack is from right to left and no obvious vortex in the flow
field is found. One quarter cycle later, in fig. 9(b) at phase π/2, the oscillating velocity of the air decreases and changes
its direction from left to right. Then, the main flow become slowly, and a forward vortex and a backward vortex can
be seen near the stack. Another quarter cycle later, in fig. 9(c), the oscillating velocity with the +x-direction increases,
and the combined velocity is significant. In fig. 9(d) at phase 3π/2, the oscillating flow inverses to −x-direction and
velocity decreases again. An obvious vortex can be found in the right region of the stack due to the contribution of the
oscillating flow and the opposite inlet flow. We denote that the oscillating flow and vortex enhance the heat transfer
between the air and the stack in the Rijke tube.

Another interesting phenomenon in the Rijke tube is low Mach number compressible flow. From fig. 9 and the
discussion above, one can find that the air in the Rijke tube reach its maximal value at phase π (see fig. 9(c)). The
corresponding Mach number contours at the phase π are presented in fig. 10. It can be found that the maximal Mach
number is in the upper region of the stack and about 0.035, which is much less than the critical value 0.3 used in the
conventional fluid dynamics for the compressible flow. On the other hand, the nonlinear self-excited onset is essentially
due to the compressibility of the air volume in the Rijke tube. As a result, the air flows before or under the limit cycle
condition in the Rijke tube can be classified as low Mach number compressible fluid flow and heat transfer. And such
specific flow will be studied in detail in the future.
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Fig. 9. Instantaneous velocity fields near the stack at four phases under the limit cycle condition. (a) 0; (b) π/2; (c) π; (d)
3π/2. (x/m).

Fig. 10. The Mach number contours near the stack at phase π under the limit cycle condition. (x/m).

5 Conclusion

In this work, a numerical study on the nonlinear thermoacoustic self-excited onset was performed via the LBM. A
LBM model for viscous compressible flow and the IMEX FDLBM developed by us were introduced and used to develop
a solver. Shared memory programming with OpenMP was also adopted in this solver. An open-open Rijke tube with
a constant-temperature stack was simulated with the LBM solver. Details of the boundary treatments are given.

From the numerical results, overall nonlinear onset process is presented significantly in the time histories of the
pressure, velocity and temperature at different locations. Self-excited standing wave in the Rijke tube is observed. It
is found that the temperature of the air in the main region of the Rijke tube is about 960K under the limit cycle
condition. The length of the Rijke tube along the x-direction covers a 1/4 wavelength of the standing wave and the
main component of the standing wave is 171.2Hz. These numerical results agree well with the theoretical prediction.
Instantaneous temperature fields and velocity fields near the stack when the air volume is under its limit cycle condition
are presented and discussed. The maximal Mach number in the Rijke tube is about 0.035. The air flows before or
under the limit cycle condition in the Rijke tube are regards as the low Mach number compressible flow.

The LBM solver used in this work is being employed for ongoing study on the low Mach number compressible flow
and the flow within porous medium in the thermoacoustic engine.
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