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Abstract. We study the impact of a time-dependent external driving of the lattice phonons in a minimal
model of a BCS superconductor. Upon evaluating the driving-induced vertex corrections of the phonon-
mediated electron-electron interaction, we show that parametric phonon driving can be used to elevate the
critical temperature Tc, while a dipolar phonon drive has no effect. We provide simple analytic expressions
for the enhancement factor of Tc. Furthermore, a mean-field analysis of a nonlinear phonon-phonon in-
teraction also shows that phonon anharmonicities further amplify Tc. Our results hold universally for the
large class of normal BCS superconductors.

1 Introduction

Quantum many-body systems which are driven far away
from thermal equilibrium represent an increasingly fas-
cinating realm of condensed matter physics, since recent
progress in the experimental techniques has made it pos-
sible to manipulate condensed matter quantum states by
strong external fields [1]. Light can strongly modify phases
of correlated quantum many-body systems. For instance,
strong time-dependent fields can induce transient super-
conducting phases in different material classes [2–8]. More-
over, electromagnetic irradiation can induce a collapse of
long-range ordered charge-density wave phases [9–12], de-
construct insulating phases [13–15], or break up Cooper
pair quasiparticles [16–19].

Conceptual insight into the possible physical mecha-
nisms has been greatly advanced recently [20–26]. In the
presence of strong lattice anharmonicities, the nonlinear
coupling of a resonantly driven phonon to other Raman-
active modes leads to a rectification of a directly excited
infrared-active mode and to a net displacement of the
crystal along the coordinate of all anharmonically cou-
pled modes [20,21]. Selective vibrational excitation can
also drive high-TC cuprates into a transiently enhanced
superconducting state. Moreover, on the basis of the non-
equilibrium Keldysh formalism, partial melting of the su-
perconducting phase by the pump field has been iden-
tified [22]. Furthermore, an advanced extension of the
single-layer t-J-V model of cuprates to three dimensions
has been used to show that an optical pump can suppress
the charge order and enhance superconductivity [23]. In
an effective approach on the basis of a driving-induced
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reduction of the electronic hopping amplitude, the re-
sulting increase of the density of states near the Fermi
edge has been shown to enhance superconductivity [24].
Using the nonequilibrium dynamical mean-field theory
for a strongly coupled electron-phonon system, a strong
electron-mediated phonon-phonon interaction has been re-
vealed [25]. These theoretical approaches are all very ad-
vanced and specialized to particular classes of systems and
are rather successful in explaining experimental data for
specific materials. Yet, it is still desirable to establish and
analyze minimal models to reveal the fundamental mech-
anisms in terms of simple and elegant analytical results.
Very recently, such a minimal model of a strongly driven
electron-phonon Hamiltonian has been analyzed upon us-
ing Floquet formalism [26]. A Floquet BCS gap equation
is derived which calls for a numerical solution and does
not permit closed analytic results.

In this work, we aim to obtain a rather general and
explicit analytical result to illustrate the driving-induced
elevation of the critical temperature of a normal super-
conductor by extending the conventional BCS theory. We
go beyond the existing approaches, which usually consider
the modification of the distribution function of charge car-
riers (see e.g. [27]). We consider the standard Fröhlich-
type electron-phonon Hamiltonian with linear phonons
subject to a time-dependent external driving. We show
that a simple dipolar coupling of the driving field to
the phonon displacement coordinates only yields a scalar
phase shift and does not modify the electron-phonon in-
teraction vertex. In contrast to that, a parametric driv-
ing of the phonon frequencies strongly modifies the re-
tarded Green’s function, thereby changing the effective
electron-electron attraction in a fundamental way. In or-
der to quantify these effects, we introduce an elevation
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factor η of the critical temperature which can be directly
calculated in our approach. In the limits of weak and
strong driving fields, we obtain simple expressions for η,
which reveal how the critical temperature can be enhanced
even if the driving is nonresonant. Finally, we show that a
parametric phonon drive combined with a phonon-phonon
interaction can induce an additional elevation of the crit-
ical temperature. This is apparent already on the level of
a mean-field treatment of the nonlinear phononics.

2 Minimal model of a driven BCS
superconductor

The canonical modeling of the superconducting materials
is based on the Fröhlich-type Hamiltonian (� = 1)

H0 = Hψ[ck] + HΩ +
λ√V

∑

k,q

(a†
q + a−q)c†k−qck, (1)

where Hψ[ck] =
∑

k(εk − μ)c†kck is a Hamiltonian of the
electronic conductance band,

HΩ =
∑

q

Ωqa†
qaq (2)

describes the phonon degrees of freedom with the disper-
sion Ωq and λ is the electron-phonon interaction strength.
V is the volume of the sample. The deflection field Qq =
a†
q + a−q of the phonons is the Fourier transform of the

phonon coordinate. The BCS theory is build upon the fact
that Qq can be integrated over, such that an exact effec-
tive action

S = S0 + λ2
∑

q,k,k′

∫
dtdt′c†k+q(t)ck(t)G(q, t − t′)

× c†k′−q(t′)ck′(t′) (3)

results. Here, G(q, t − t′) is the Green’s function (GF) of
the deflection field Qq. Its retarded component is canoni-
cally defined as:

GR(q,q′, t − t′) = −iΘ(t − t′)

× 〈Qq(t)Qq′(t′) − Qq′(t′)Qq(t)〉. (4)

It generates an approximative interaction vertex ampli-
tude V (q, ω) of an effective electron-electron interaction
mediated by the phonons and is at the heart of BCS the-
ory of superconductivity. To lowest order in λ, one then
obtains for the interaction vertex

V (q, ω) = λ2GR
0 (q,−q, ω) =

2Ωqλ2

ω2 − Ω2
q

, (5)

where ω is the energy transfer during the scattering of the
electron pair. Obviously, if ω2 < Ω2

q, the effective inter-
action is attractive, thus leading to the Cooper instabil-
ity and superconducting ground state [28]. In general, the
larger the overall scale of Ωq is, the larger is the range of

energies ω and the higher is the number of electrons, for
which the mutual interaction becomes attractive. This is
accompanied by an increase of the critical temperature Tc,
at which the superconducting gap vanishes.

The critical temperature in a BCS superconductor in
a simplest model of an attractive constant potential of
strength V0 is given by (kB = 1)

Tc � ωDe−1/[V0ρ(EF )], (6)

where ρ(EF ) is the density of the electronic states at the
Fermi edge and ωD is the Debye frequency which fixes the
characteristic energy scale for the phonon degrees of free-
dom. The expression in equation (6) can be considered
as generic if one interprets V0 as an effective parameter
which measures the strength of the (in general energy and
momentum dependent) attractive potential. There are ba-
sically three different options to increase Tc by changing
one of the above parameters. We shall consider two of
them: (i) the enhancement of the effective attraction V0;
and (ii) the increase of ωD.

One way to modify the denominator of equation (5)
is to drive the phonons by strong electromagnetic exter-
nal THz fields. The driving can induce phonon excitations
in sequential steps, in which the phonons are directly ex-
cited by applied EM field pulses. Alternatively, infrared-
active phonon modes with a finite dipole moment can be
excited, and due to nonlinear phonon coupling, normal
phonon Raman modes of the crystal are excited [20,26].
We choose not to concentrate on these intricacies as they
are strongly material-dependent and thus nonuniversal
and consider the driving as acting directly on the relevant
phonon mode. There are essentially two qualitatively dif-
ferent possibilities, the dipolar (or linear) driving where
the drive couples to the phonon deflection field, and the
parametric (or quadratic) driving where the drive modu-
lates the phonon frequencies.

3 The effect of phonon driving

The dipolar phonon driving by an explicitly time-
dependent driving field Δq(t) does not influence the re-
tarded GF GR(q,q′, ω). This immediately follows when
we replace equation (2) by

HΩ =
∑

q

Ωqa†
qaq + Δq(t)(a†

q + a−q). (7)

The electron-phonon coupling strength λ is quite weak in
most of the known superconducting materials. For this
reason, the leading behavior of the GR(q,q′, ω) is domi-
nated by the contribution of the phonon subsystem only.
Solving the equations of motion for HΩ, one readily finds
aq(t) = [aq(0) + f(t)]e−iΩqt, where

f(t) = −i

∫ t

dt′Δq(t′)eiΩqt
′

is a simple time-dependent scalar phase shift. As the re-
tarded GF is a commutator of fields, a mere shift of them
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GR(q,q′, ω) = iδ−q,q′

⎧
⎨

⎩
−i2Ωq

ω2 − Ω2
q
− i

∞∑

n=1

(ω − Ωq)Jn

[
ny

ω−Ωq

]

(ω − Ωq)2 − (nΓq/2)2
−

(ω + Ωq)Jn

[
− ny

ω+Ωq

]

(ω + Ωq)2 − (nΓq/2)2

⎫
⎬

⎭ , (11)

J̄n

[
ny

ω − Ωq

]
=

1

2

∫ 1

−1

dxJn

[
xnΔq

ω − Ωq

]
(13)

=
1

(n + 1)!

[
nΔq

2(ω − Ωq)

]n

1F2

[
1 + n

2
;
3 + n

2
, 1 + n;−

(
nΔq

2(ω − Ωq)

)2
]

(14)

does not affect the GF at all. Thus, we conclude that
within our approximation the linear driving does not af-
fect the conventional BCS superconductivity picture.

The parametric driving enters via the Hamiltonian

HΩ =
∑

q

[Ωq + Δq(t)]a†
qaq. (8)

It is, e.g., realized indirectly by resonantly driving
infrared-active phonon modes with a finite dipole moment,
which couple quadratically to normal Raman modes of the
crystal [1,3,20,21] or by the quadrupole component of an
electromagnetic field. The trivial case is the static driving,
i.e., Δq(t) = Δq, which simply is an increase of phonon
frequencies. As the Debye frequency rises as well, an in-
crease of Tc is obvious. This effect is known and is ex-
perimentally detected in crystals subject to high pressure.
In the dynamical case, the solution for the time evolu-
tion equation is obviously aq(t) = aq(0)e−iα(t) with the
phase α(t) = Ωqt +

∫ t
0 dt′Δq(t′). Then, the retarded GF

of equation (4) follows as:

GR(q,q′, t, t′) = −iδ−q,q′Θ(t − t′)

×
∑

±
(±1)e±i[α(t)−α(t′)]. (9)

Without restricting the generality, we henceforth assume
periodic time-dependent driving in the form

Δq(t) = Δq cos(Γqt), (10)

where Δq is the strength and Γq is the frequency of the
driving. After a Fourier expansion with respect to the time
difference t − t′, we obtain a result in terms of the nth
ordinary Bessel function [29]:

see equation (11) above

where

y = Δq sin
[
Γq

(t + t′)
2

]
(12)

explicitly depends on the evolution time τ = (t + t′)/2.
We recover the zero-order contribution of equation (5) as
the first term of the r.h.s. of equation (11). Moreover, the
multiphonon parametric resonances are apparent from the
denominators when 2ω̃q = nΓq.

To proceed, we exploit that the typical driving fre-
quency in the experiments is in the THz regime, which is

slightly smaller than the typical Debye frequency of su-
perconducting materials. Hence, we may average over the
period of the external driving with respect to τ . For the
time-averaged Bessel functions, we then obtain

see equations (13) and (14) above

for even n and zero otherwise. Here, 1F2 denotes the hy-
pergeometric function [29]. Its maximum is of the order of
1 for n < 2 for any argument and it decays exponentially
for n > 2. Hence, we may focus on the lowest order term
n = 2 only. The physical meaning is immediate. n denotes
the number of phonons which participate in the renormal-
ization of the GF by the vertex. The odd phonon numbers
do not contribute for symmetry reasons. The larger n, the
more efficient is the mutual cancellation during averaging.
As a result, only the two-phonon process survives which
is the parametric resonance.

In order to quantify the enhancement of the interac-
tion vertex around the Fermi edge, we define the enhance-
ment factor η = GR(q,q′, 0)/GR

0 (q,q′, 0) as the ratio of
the two retarded GF in the low-energy limit. Moreover,
we may exploit the asymptotic behavior of the hyper-
geometric function for n = 2 for x � 1 in the form
1
6x2

1F2[3/2; 5/2, 3;−x2] = x2/6 + O(x4) to assess the
quantitative behavior of the GF in equation (4) in the
vicinity of the Fermi edge ω → 0. Hence, for weak driving
Δq � Ωq, we obtain

η =
GR(q,q′, 0)
GR

0 (q,q′, 0)
= 1 +

Δ2
q

6(Ω2
q − Γ 2

q)
. (15)

η > 1 implies a relative enhancement of the attractive in-
teraction around the Fermi edge and thus an increase in
Tc, since η enters in the expression for the critical temper-
ature as a factor renormalizing the electron-phonon cou-
pling strength according to V0 → ηV0. This occurs for
subresonant driving Ωq > Γq, which is the most realistic
regime from the point of view of contemporary experi-
ments, and can, at least in principle, become quite large.
In the opposite case of superresonant driving Ωq < Γq,
there is a decrease of Tc. This kind of transition should be
experimentally observable.

In the limit of strong driving Δq � Ωq, we obtain with
1
6x2

1F2[3/2; 5/2, 3;−x2] = 1/(2|x|) + O(1/x2) for x � 1
the enhancement factor

η = 1 +
Ω3

q

2Δq(Ω2
q − Γ 2

q)
. (16)
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It shows the similar dependence of Ωq and Γq. Although
an estimate of the validity region of our approximation is
more involved, we believe our results to hold for η ∼ 1–2.

4 Nonlinear phononics

Next, we address the role of the phonon anharmonicity.
On the microscopic level, it arises due to a nonlinear inter-
action between the phonons. Usually, one encounters two
different kinds: three- and four-phonon interaction pro-
cesses. They are described by the Hamiltonians

H3 =
∑

q,k

M3(q,k)QkQqQ−k−q, (17)

H4 =
∑

q,k,p

M4(q,k,p)QkQqQ−k−pQ−q+p, (18)

where M3,4 are the corresponding interaction amplitudes.
As a rule, they are small and the appropriate way to as-
sess their influence is the perturbation theory. It turns
out that the three-phonon self-energy vanishes exactly for
homogeneous systems and is strongly suppressed in lat-
tices with high symmetry groups. Hence, we focus on the
four-phonon process. We are interested in the effective
properties of one single phonon mode. Therefore, the most
important contribution is expected to be given by the non-
diffractive scattering processes of the given phonon mode
on itself, when p = 0 and k = q. The underlying effective
Hamiltonian [30] can be inferred from the above one and
one finds

HΩ =
∑

q

Ωqa†
qaq + χ(q)a†

qa†
qaqaq. (19)

The anharmonicity coefficient χ(q) can be obtained from
M4(q,q,0) and is expected to be small. Since phonons
at rest do not exist we can write χ(q) ≈ χ1q, where
q = |q|. Although in a superconducting material at low
temperatures the phonon expectation value 〈a†

qaq〉 = Nq

is strongly suppressed, this is not the case in presence of
an external drive. Invoking a mean field approximation,
the effective Hamiltonian is found to be

HΩ ≈
∑

q

Ωqa†
qaq + χ(q)a†

qNqaq

=
∑

q

[Ωq + χ(q)Nq]a†
qaq. (20)

In equilibrium and without external driving, Nq is deter-
mined from the self-consistency condition

Nq =
[
eβ(Ωq+χqNq) − 1

]−1

, (21)

and turns out to be smaller in comparison to the linear
system with χq = 0. For this reason, the impact of the an-
harmonic phonon subsystem on the electronic properties
is negligible and does not induce any appreciable change
in Tc without driving [31]. This is completely different in

a strongly driven system, where the phonon population
Nq is determined by the irradiation field. In this case,
the phonon subsystem is stiffer and is characterized by an
effectively enhanced Debye frequency ωD. In order to illus-
trate this feature, we consider the simplest case Ωq = vsq,
where vs is the bare sound velocity of the crystal. Then,
Ωeff(q) ≡ Ωq + χ(q)Nq ≈ (vs + χ1Nq)q. Hence, the crit-
ical temperature is renormalized according to Tc → ξTc
with ξ = 1 + Nqχ1/vs and is thus increased.

Hence, if a nonlinear superconducting material is ex-
posed to strong external parametric driving, the critical
temperature can be increased by two effects, so that equa-
tion (6) is modified to

Tc � ξωDe−1/[ηV0ρ(EF )], (22)

when η, ξ > 1. Overall, the theory is expected to hold
quantitatively up to Δq/Γq � 1. It is important to realize
that the enhancement factor enters in the exponent of Tc.

5 Discussion and conclusions

By considering a minimal model of a Fröhlich-type BCS
Hamiltonian of a normal superconductor in presence of
a time-dependent periodic electromagnetic driving of the
phonons, we illustrate the basic physical mechanisms by
which the critical temperature Tc can be elevated. We
show that while a dipole (linear) driving cannot change
Tc of the material, quadratic (parametric) driving can en-
hance the effective attractive phonon-mediated electron-
electron interaction and thus increase the critical temper-
ature. The effect in this minimal model is illustrated in
terms of the enhancement factor of the interaction ver-
tex caused by the external driving. In the limits of weak
and strong external phonon driving, we find simple an-
alytic results for the vertex enhancement. Furthermore,
although an additional phonon anharmonicity does not
change Tc in BCS superconductors held at equilibrium,
nonlinear phononics can provide an additional contribu-
tion to the elevation of Tc, in that the effective Debye fre-
quency is renormalized. Finally, we note that the external
phonon drive also increases electron scattering, which in
general suppresses Cooper pairing. Yet, it has been shown
recently [26] that the dynamic enhancement of the forma-
tion of Cooper pairs addressed here dominates over the
increase of the scattering rate. These results in terms of
a minimal model shed new light on the essential ingredi-
ents needed for manipulating the characteristics of a BCS
superconductor. A detailed analysis of the quasiparticle
decay processes and their interplay with enhanced inter-
action vertex is an obvious avenue for further research [32].
Another source of Tc suppression might stem from ther-
mal phonons, the effect of which can be taken into account
along the lines of references [33,34]. In future work, one
also could allow for more realistic interactions, as is, for
instance, shown in reference [35]. These effects are, how-
ever, to a larger degree material-dependent and thus less
universal.
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