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Abstract. We present a one-parameter family of mathematical models describing the dynamics of polarons
in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced
to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the
continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice,
we compute stationary polaron solutions numerically. We investigate polaron propagation induced by
several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic
component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations
can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.

1 Introduction

The polaron, a quasi-particle formed by the coupling of
an electron to a vibrating lattice, was first theorised by
Landau in 1933 [1]. In essence, polaron formation is a
process of electron self-trapping. The presence of the elec-
tron causes localised distortions in the natural vibrational
mode of the lattice, a.k.a. the lattice phonon. In return, if
the electromagnetic interaction between the electron and
lattice is appropriate, then the phonon distortions can
lower the potential well for the electron, thus trapping
the electron.

Some twenty years after the inception of the polaron
concept, a mathematical description of it was formalised
by Frohlich [2] and subsequently Holstein [3,4]. Since then,
properties of the Frohlich-Holstein polaron have been well
studied, with some authors hypothesising an application
of dynamical polarons as electron transporters in conduc-
tive material [5-7]. In 1970s, A.S. Davydov used the basis
of polaron theory to explain some biological processes [8].
Specifically he proposed that, in an a-helical protein, a
certain intramolecular oscillator can interact with the pep-
tide chain in a way similar to an electron interacting with
a crystal lattice. Davydov suggested that this interaction
could lead to the localisation and propagation of vibra-
tional energy in the a-helix. Later, A.C. Scott modified
Davydov’s theory, taking into account the internal geom-
etry of peptide units [9]. Some authors argued that, given
the polarisability of peptide units, electron self-trapping
is also possible in proteins, and it can be described by
the same mathematical model that Davydov and Scott
used [10,11]. It should therefore be possible that polaronic
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transport of electrons may take place in proteins, too. Re-
cently, Brizhik et al. reported on the properties of static
and dynamical polarons in simple molecular chains, and
adverted to the applicability of their results to electron
transport in biomolecules such as proteins [12-14]. Their
studies were based on the Davydov-Scott model.

In the current study, we propose a generalisation to
the Davydov-Scott model, and use it to explore the prop-
erties of polarons in a linear peptide chain. In the gener-
alised model, there is an extra parameter which represents
the extent to which the electron-polypeptide interaction is
spatially symmetric. In Section 2, we describe our model
and explain why the extra parameter is necessary. We also
give physical interpretations of all other parameters in the
model, justifying the choices of their values where possi-
ble. Then, we derive a set of coupled dynamical equations
which govern the electron and phonon parts of the po-
laron, as well as how they interact. In Section 3 we look
at solutions to our equations which are stationary, and
thus deduce properties of static polarons admissible by our
model, such as the polaron’s binding energy. The process
of solving the equations is carried out analytically as well
as numerically. By the former approach, a closed-form ex-
pression for the solution is found, but its use is limited, be-
cause the solution process involves a few approximations
and simplifying assumptions. By the numerical approach,
no convenient expression for the solution is possible, but
the method solves the equations directly without simpli-
fications. We compare the results produced by the two
different methods.

Section 4 concerns dynamical polarons. We discover
that it is possible to use a suitable external forcing to
displace the stationary polaron, and to sustain its mo-
tion in such a way that its energy remains highly stable.
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We investigate how the polaron’s motion depends upon
our forcing parameters. We use only numerical methods
to obtain our results in Section 4, as well as those in Sec-
tion 5, where we consider how the polaron’s motion is af-
fected by temperature of the environment. For this part,
the external forcing from Section 4 remains in place, but
we also utilise a parameter which controls the magnitude
of the thermal effect. To account for the random nature of
thermal fluctuations, we repeat each numerical simulation
many times over, taking the average of the results. Finally,
we conclude by discussing the physical realisabililty of our
mathematical model, particularly how the external forc-
ing which we study in Section 4 may be realised. We also
briefly discuss the generalisability of our model to study-
ing electron transport by polarons in a-helices.

2 The model and dynamical equations

In both Davydov’s and Scott’s models, the Hamiltonian
for a system of excitons interacting with one-dimensional
lattice phonons is written in Frohlich-Holstein form H =
H + H + Hmt, where He,H and Hmt represent en-
ergy contrlbutlons from the exciton, phonon and inter-
action parts, respectively [2,3,9,15,16]. We adopt this
Hamiltonian for our model, and following [12-14] we con-
sider an additional external Hamiltonian, ﬁext, so that our
Hamiltonian takes the form

(1)

where H, describes a tight-binding electron, the stretching
and compressing of hydrogen bonds in the peptide chain
are phonon oscillations described by Hy,, Hin accounts for

ﬁ = f{e + f{p + IA{int + IA{exta

the electron-phonon interaction, and Heox represents the
effect of an external electric field. We assume that the pep-
tide chain consists of N 41 identical units and N identical
hydrogen bonds. In the tight-binding approximation, we
have

N N-—
A= hAld, - Z V(AL A+ A ). @
n=0 n=0

The subscript n in equation (2) labels peptide units, which
are the unit cells of our lattice. AT and A, are local
electron creation and annihilation operators, respectively.
Jo is the potential energy of a localised electron. Mod-
elling each unit as a point-dipole, we assume the nearest-
neighbour dipole interaction energy is a constant and write
it as —J; [17-19]. The external Hamiltonian,

N
Hexy = — Y _qE(t)R (n —ng) A A, (3)

models the effect of an electric field with strength E(t) on
the potential energy of a localised electron with charge —q.
The potential energy due to E(t) is set to zero at some
arbitrary ng, and R = 4.5 A is the equilibrium lattice
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spacing. Since the electron mass is several orders smaller
than the mass of a peptide unit, we take a semi-classical
approach where the phonon Hamiltonian, H'p, is a classical
one. In the harmonic approximation, the hydrogen bonds
are modelled as Hookean springs with force constant K,
and therefore H,, takes the form

N
ﬁp:ZOQP +ZM(22 T

where M = 1.774 x 1072?° kg is the average mass of a
peptide unit in a membrane a-helix [20], and we have
defined 2 := /K/M. U, and P, are, respectively, the
displacement and conjugate momentum of the nth unit.
Thus, the first and second sums in the expression for
ﬁp represent, respectively, the kinetic and potential en-
ergies of the lattice. We take the value of {2 to be the
natural angular frequency of slow phonons in an a-helix,
2 = 5.5 x 102 57! [21-23]. To derive the interaction
Hamiltonian, H’int, Davydov and Scott assumed that the
energy of an on-site excitation depends on lattice defor-
mations in its vicinity. For us, the local deformations are

Sn = - Unv (5)

namely the amount by which the lengths of hydrogen
bonds deviate from equilibrium. If we write the electron
energy at site n in a Taylor expansion, the first two terms
are Jo + xGn(Sn, Sn—1), where x is a constant, G,, is a
bilinear function, and |xG,/Jo| < 1. Then the interac-
tion Hamiltonian is I:[int = Zgzo XGnALAn- Davydov
assumed that S, and S,_; have equal influence on lo-
cal excitation energies [15], so G, = (Sp, + Sn—1) /2, and
ﬁint is

HB?V (x/2)[(U1
-1

Z n+l — )A An + (UN — UNfl)A}LVAN].
(6)

Davydov’s model is therefore spatially symmetric, since
Ajlfln is coupled equally to U,,4+1 and to U, _1. Scott mod-
ified Davydov’s model by opting for the antisymmetric
Gr(Spn, Sn—1) = Sy, instead [9]. The reason is, while both
authors let an intra-peptide C=0 oscillator take the role
of the exciton, Davydov neglected the internal geometry of
the peptide units, but Scott pointed out that every unit
has its C=0 pair immediately adjacent to the next hy-
drogen bond in the chain. This leads Scott to assume that
Ajlfln is coupled to, without loss of generality, S,,, and
not S,,_1. Scott therefore had

n+1 U )2 (4)

n+1

— Up) Al Ag

N—-1

HISnCtO = Z X(Unt1 — Un)AlAn-
n=0

(7)

Since we are modelling an electron as opposed to an intra-
peptide oscillator, we cannot use Scott’s argument to jus-
tify assuming that Af A, is coupled to U,;; and not
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to U, 1. Nor should we assume that on-site energies are af-
fected equally by deformations on both sides, as Davydov
did. We therefore propose G(Sy,, Sn—1) = XrSn + X1:Sn-1,
taking without loss of generality y, > 0 and 0 < x; < x;-.
Then,

Hing = XT(U — Uo)AJ Ay + xi(Un — Un_1) A Ay

N—
+ Z Xr n+1 )+X1(U nfl)]/i;rl/in
n=1
(8)
By defining
Xr — X1
= Xr + X1 = 9
Xi=Xr+txi, B= — 9)

so that
0<B<1,

we can write

Hip = g(l +B)(Uy — UO)A(T)AO
+ %( - 0)(Un — UNfl)A}LvAN
N—1 N
+ ) [(Unt1 = Un-1)
n=1
+ B (U1 + Uno1 —20,)] AL A, (10)
We treat y as an adjustable parameter. Setting § = 0
(xi = Xxr) gives us the symmetric model of Davydov as

per equation (6), whilst setting 8 = 1 (x; = 0) produces
the antisymmetric model of Scott as per equation (7).
The larger 3 is, the less spatial symmetry our model pos-
sesses. Indeed, for 8 € [0,1), the ratio of n-(n + 1) cou-
pling strength to n-(n — 1) coupling strength is given by
xr/xi = (1+0)/(1—73), and this ratio is strictly increasing
with (.

We write the electronic state of the system as a linear
superposition of local excitations [12],

I

where |vac) is the vacuum state, and a,, € C is the prob-
ability amplitude for an electron localised at the nth site,
subject to the normalisation condition,

N
> lanl® =
n=0

We proceed to derive dynamical equations for a,, and U,.
By equating coefficients of Af [vac) on both sides of the
Schrodinger equation, ik d |¥) /dt = (ﬁe—f—ﬁint—l—ﬁem) @),
we obtain

(11)

AT Jvac)

(12)

hdd—t [Jo-k (Sp+ Sn—1) + ﬂ( Sn—1)| o
—J1 (g1 + 1) — qE( )R (n —ng) «

(13)
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We have defined

S 1=8v=0, a1=ayns1 =0, (14)
so that equation (13) holds for all n including the bound-
ary terms (n = 0, N). Equations for U,, are derived from

classical Hamilton equations, dU,, /dt = OH./0P, and

dP, /dt = —9Hy,/0U,,, where Hey, := (W|(Hy + Hing)|P).
These equations are
42U, )
=M% (Sn = Su1)
X 2 2 2 2
+ 5 [(lansa? + lanl?) = (lanf + lan-1/?)]
X
= 28] (lnsiP=lenl?) = (Jon =l ) |

(15)

In order that equation (15) holds at the boundaries, we
have set

ag=ay =0. (16)
This boundary condition is justified because we expect the
probability distribution |a,|* to be highly localised with
half-width of O(1), and because we will be working with
large lattices with NV > 1. Next, we introduce the gauge
transformation,

anlt) = n(exp |~ o -200] . (D)

which sets Jy = 2J7 in equation (13). Physically this rep-
resents a shift in the arbitrary reference value from which
energy is measured. We then have the discrete Laplacian,
—J1 (@pt1 + @n—1 — 2av,), on the r.h.s. of equation (13).
Meanwhile, to account for the interaction between the
peptide chain and its environment, we need to add
Langevin terms to the r.h.s. of equation (15) [13,14,24,25].
They are, a damping term describing energy dissipa-
tion due to friction, —I" dU,,/dt, where I" is the viscous
damping coefficient; and a stochastic term F, (¢), describ-
ing random forces due to thermal fluctuations. Specifi-
cally, F,,(t) is normally-distributed with zero mean and
correlation function
<Fm (t)Fn(t/» = 2FkB@5m,n5(t - tl)7 (18)

where kp is the Boltzmann constant and @ is the temper-
ature of the environment.

Scaling time by 27! and length by R gives us the
following non-dimensionalised dynamical equations for ¢,
and u, :=U,/R, forn=0,1,...,N.

“/’n =0 [(8n + 8n—1) + B (sn — 8n—1)] ¥n
=P (Png1 + n—1 — 2¢,) — €(T)(n — no)n,
(19a)
iip, = (Sp — $n—1) + 6 [(cn — en—1) = B(gn — gn—1)]
— YUy, + fn(7), (19b)
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where we have defined

Sp 1= Un+41 — Un,
gn =W * = [al”,  cn = lonsa [ + [0l

and where the overdot denotes differentiation with respect
to dimensionless time 7, and

(20)

_h B s X
P= 0 2he2’ OMR(Q?'
r 4ER F,

Equation (19) holds subject to the boundary condi-
tions (14) and (16), as well as the normalisation condition,

N
Dl =1,
n=0

It is easily verifiable that setting 6 = 0 and § = 1 in
equation (19) produces Davydov’s and Scott’s dynamical
equations, respectively [9,15]. p is known as an adiabatic-
ity parameter, as it is the ratio of the characteristic time
scale of phonon vibrations to that of electronic phase vari-
ations [26]. We fix Ji, following [12-14] (which used a dif-
ferent scaling), at p = 2.1. Moreover, since M, R and (2
are fixed, the ratio 0/0 = 1880 is constant. The range
of § which we consider throughout this study correspond
to x ~ O(10711) N, agreeing with [9]. Finally, we take
~v = 0.05, agreeing with [12-14] up to different scaling
factors.

(22)

3 Stationary polaron solutions

We derive stationary polaron solutions to equation (19),
subject to zero electric field (e = 0) and zero temperature
(fn = 0). We consider analytical and numerical methods
separately, and compare the results.

3.1 Analytical results

When f,, =0 and 4, = i, = 0, equation (19b) becomes

$n = Sn—1="0[B(gn — gn-1) — (cn —cn-1)],  (23)
which holds if
Sn = Unt1 — U = 0 (Bgn — cn)
=5[(B=Dleniil” - BV ] (24)

Putting equation (24) into equation (19a) and requiring
e =0 gives us

ity = =06 [ (1= 82) [ma* + (1= 82) [

+2(1+ 8 [ ]

-p (d}nJrl + 1Z)nfl - 21%) . (25)
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Defining
Awn = wn-i-l +Yn1 — 21%7 (26&)
Alpal? = [nia P+ [na | = 210l*, (26D)
and the composite parameters
406 X2
=0 X 2
A PRI (27)
o) A
p=Z @) =20-2), ey
p 4
we can rewrite equation (25) as
ip™ W+ A+ A ||+ A 0 = 0. (29)

We note that, since M, {2 and J; are all fixed, the param-
eter A inherits the adjustability of x. Now, in a stationary
state, the time dependence of ¢, can be at most a vari-
ation of the phase factor. Following [15], we consider the
ansatz

Un(7) = exp (ipHoT + ik&) d()lc—(n_nyoyr>  (30)
where £ is a real, continuous variable with —NR/2 < ¢ <
NR/2, ¢ is a real, twice-differentiable function, and Hy
and k are constants. In particular, Hy is an energy eigen-
value, in the sense that

ip71¢n = —H01/)n

In the limit N > 1, R becomes small compared to the
domain size, which enables us to invoke the continuum
approximation,

(31)

Uner = exp (ipHoT + ik (¢ + R)) [6(6) + R/ (&)

g6+ o] ] L3
¢=(n—N/2)R
implying
[Uns1|* = (€)% £ 2RH(€) (&) + R24(€)" (€)
+R2(9/(€))" + O(R?) (33)

¢=(n—N/2)R
Putting equations (30)—(33) into equation (29), then di-

viding by exp (ipHo7 + ik§) and retaining terms up to
O(R?), we obtain

0= —Hog(€) + | cos(kR) (26(6) + R20"(€)) = 26/(¢)
+isin(kR) (2R'(6)) | +A6(€)° + 2 [26(€)0" (&)

/o2
+20010)° 60| (34)
The last term in equation (34) is equivalent to
nR? d*(¢(€))?/d€*$(¢). (35)
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Equating imaginary parts of equation (34) gives us k = 0.
After the scaling = := £/ R, the real part of equation (34)
becomes

—Hod + duo + A0° +1(6°) 02 = 0, (36)

when x = n — N/2. The subscript = denotes differentia-
tion with respect to z. We seek ¢(z) which satisfies equa-
tion (36) for all z, not just when z = n — N/2. Then,
from such a ¢(z) we will be able to recover the discrete
solution 1, (1) via £ = R and equation (30). Further to
being globally defined, we require that ¢(x) has vanish-
ing derivatives at infinity, and satisfies the normalisation
condition,

/_ Y () dr = 1. (37)

If n =0 (i.e. B = 1), then equation (36) reduces to the
nonlinear Schrédinger equation with a cubic nonlinearity,
which has a well-known solution satisfying all the above
constraints [9],

Hy = )\?/16, ¢(x) = :l:\/é sech)\Txx for all z.  (38)

Consider > 0 (i.e. 8 < 1). Since (¢?) sz = 20Pp2+2(¢2)?,
we rewrite equation (36) as

— Ho¢ + pua (1+2007) + 20> + 21 (¢2)> 6 = 0. (39)

We dedicate the remainder of this section to analysing
equation (39). It is an autonomous equation for ¢(x),
which allows us to define h(¢) := ¢,, and write

d(¢)
dg

We define y(¢) := h?, so that ys = 2hhy, and multiply
equation (39) by 2 to obtain

(14 2n¢?) yy + dndy = 2Hop — 2X¢°.

The Lh.s. of equation (41) is the total derivative of (1 +
2n¢? )y with respect to ¢. We therefore have

O

Or = hh¢ (40)

(41)

[ (2Hoo — 2X\¢*) do _ Hod? — \¢p*/2 +C

y(9) = 1+ 2792 1+ 2792

(42)

The integration constant C' is determined by considering
the limit # — oo, in which ¢? — 0 and y = (¢,)? — 0. We
therefore have C' = 0. Now we note that, if Hy < 0, then
the r.h.s. of equation (42) is negative whenever ¢ # 0, so it
cannot equal the L.h.s. which is (¢,)2. Thus, if Hy < 0 then
the only ¢(z) satisfying equation (42) is identically zero.
We therefore require Hy > 0. Multiplying equation (42)
by 4¢2, we obtain

 4Hyp* — 22¢S

2
(206.)" =~ 5. (43)
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We then define @ := ¢?, and equation (43) becomes

_ 4HyP? - 2)9°

(@) = S (44)

If equation (44) has a solution which is globally non-
negative and twice-differentiable, has vanishing deriva-
tives at infinity, and satisfies

/00 &(x) de =1,

— 00

(45)

then we claim that @(x) must attain its global upper
bound of 2Hy/A at some finite x, and that every local
maximum of @ must also be a global maximum. The proof
of this claim is as follows. Since @ cannot be identically
zero, and since limy 4o @(2) = 0, &(z) must have at
least one turning point, at some finite z and non-zero ®.
But we observe from equation (44) that ¢, vanishes if
and only if & = 0 or 2Hy/A. Therefore, ®(x) must at-
tain its global upper bound of 2Hy/\ at least once, and
no other local maximum value is possible. This concludes
the proof. We further propose that wherever &(z) at-
tains its maximum value, say at © = Zpax, the second
derivative @,, does not vanish there. The proof is as fol-
lows. On the one hand, we have ®,, = 200, + 2(¢.)?;
when & = Zpax, we also have ¢, = @, /(2¢) = 0, there-
fore @, = 2¢¢,,. On the other hand, equation (36) is
equivalent not only to equation (39) but also to n¢®,., =
Hyp — ¢pw — A@>. It follows that, at © = Zax, we have
(1/(2¢) + n¢)Prr = Hop — A¢?, and therefore &,, =
(2Ho® — 20®%)/(1 + 2n®). Since P(rmax) = 2Hgy/A, it
follows that @, (Tmax) = —4HZ/(\ + 4nHp) < 0, as re-
quired. A corollary of the above proposition is that there
must exist some neighbourhood of x = x,x containing
no maxima of @(z) other than x,.x itself. Without loss of
generality, let 2, = 0. Suppose the corollary is false, so
that every neighbourhood of x = 0 contains some non-zero
2 at which @(x) is maximal. Then, there must exist some
sequence z,, approaching 0 such that @¢(x) is maximal at
every &, with ®(z,,) = @(0). But this leads to a contra-
diction. Indeed, for every x,, we have the Taylor expansion
D(xy,) = P(0)+P,.(0)22 /2+O(23), where the first deriva-
tive is absent because @(x) has a maximum at 0. It then
follows that @,,(0) = lim, o 2(P(z,) — D(0))/22 = 0,
which contradicts the previous proposition. Therefore the
corollary is proven. Since 0 has a maxima-free neighbour-
hood, we say that ®(z) has an isolated mazimum at 0.
We note that we can indeed require that = = 0 is a
maximum of @(x), because equation (44) is translationally
invariant: if @(z) is a solution then so is ¢(x — ¢) for any
constant ¢. We exploit this invariance, requiring that @(x)
satisfies
Now we claim that there exists b > 0, which may be in-
finite, such that lim,_, ®(z) = 0, and P(x) # 0 for all
x € (0,b). The proof of this claim is as follows. If &(z) # 0
for all x € (0,00), then we are done. If ¢(x) = 0 for some
x € (0,00), then the set {x € (0,00) : ¢(x) = 0} must have
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a minimum. If it does not, then there would be a sequence
Zn > 0 such that, as n — oo, 2, — 0 and &(x,,) — 0; but
this would contradict the continuity of &(x) at x = 0.
Thus, letting b equal the least positive zero of &(z), then
we are done.

Next, we propose that no other solution on [0, b) exists,
and the proof is as follows. If @(x) has any maxima in
(0, 00), then the set

M = {z € (0,00) : §(z) is maximal at =} (47)
must have a minimum, because otherwise we would have
a contradiction to the fact that x = 0 is an isolated maxi-
mum of @(x). Let 1 = min M, and suppose x1 < b. Since
&(z1) = $(0), and since ¢(x) has no maximum in the in-
terval (0, 1), and since @(x) is continuous, it must attain
its minimum value at some point ' € (0, z1). But that im-
plies &(b') = 0, where b’ < 21 < b, contradicting the fact
that @(x) # 0 for all z € (0,b). Therefore, we must have
x1 > b. Since @, vanishes only at maxima and minima,
it follows that @, is non-vanishing on (0, b), and therefore
&(x) is strictly decreasing on [0,b). That is, any solution
to equation (44) on [0,b) satisfying all the aforementioned
constraints must also satisfy

AHyD? — 2)\P3
bo=—g(®) = | =5 o
B 1—®/d,
= Wb\ o W)

(49)

where

0<x<b &y>d>0.
On any closed interval [@1,P2] C (0,Pp), the function
g(®) is continuous and non-zero, so the reciprocal function
1/g(®) is continuous and bounded, and therefore Riemann
integrable. But ¢g(®) approaches 0 as & — @(, meaning
1/g(®) becomes unbounded. Thus, integration of 1/g(®P)
on the interval [®1,Pp] is not trivial. Luckily & = &g is
an integrable singularity of the function 1/¢(®), because
the Puiseux series of 1/g(®) about @ is O((P — $g)~/2).
Therefore, for any &1 € (0, Py], equation (48) is equiva-
lent to

®0
/ —— dP = z(P1) — 2(Po) = x(P1), (50)

by 9(P)

which determines a unique z(®1) € [0,b). The Lh.s. of
equation (50) is a strictly decreasing function of @, mean-
ing z(®1) has a unique inverse function which is also
strictly decreasing, @1 (z), on the domain x € [0,b). But
&(x) is an existing function satisfying equation (48) for all
x € [0,b). Therefore, we must have @1 (x) = &(z) for all
x € [0,b), and the uniqueness of @(x) follows.

In summary, we have so far established the following. If
equation (44) has a solution which is globally non-negative
and twice-differentiable, has vanishing derivatives at infin-
ity, and has the property that its integral over R is 1, then
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equation (44) has a solution, say @(z), which satisfies all
the above constraints as well as the condition (46), and
there exists some b > 0 which may be infinite such that
() is strictly decreasing on [0,b), and lim, ;- ®(x) = 0,
and @(z) is the unique solution on [0,b). Moreover, us-
ing exactly the same arguments as above, it can also be
shown that there exists some a < 0 which may be in-
finite such that @(z) is strictly increasing on (a,0], and
lim, ,,+ ®(z) = 0, and $(z) is the unique solution on
(a,0]. On the interval of uniqueness, (a,b), P, is given by

b, = G(xadj) = —sgn(m)g(@), (51)
where ¢ is defined by equation (48), and sgn is the sign
function.

Now we describe a method which, given A and 7, de-
termines the unique @(z) on (a, b), and also determines a,
b, Hy in the process. Indeed we will show that for any
A and 7, the interval of uniqueness for @(x) must be
(a,b) = R. The fact that (a,b) = R shall have the follow-
ing subtle consequence. Note that the derivation of equa-
tion (44) involved a multiplication by & = ¢2. Thus, the
deduction from equation (44) back to equation (39) holds
on the condition that @ # 0. Since a and b are the smallest
(in magnitude) zeros of @(x), we see that the equivalence
between equations (44) and (39) breaks down outside the
interval (a,b). That is to say, equations (44) and (39) are
equivalent globally if and only if (a,b) = R.

The method is as follows. For a € [0,b), consider the
coordinate transformation,

Z(®) := arsech (Y (D)), (52)
where
V(@) = \/g - 1/;—1;50. (53)

&(z) is a bijection from [0,b) to (0,Pg], Y (D) is a bijec-
tion from (0, Pg] to (0, 1], and the inverse sech function,
arsech, is a bijection from (0, 1] to [0, 00). Therefore, all the
coordinate transformations are invertible. For = € (a,0],
we consider exactly the same transformations as equa-
tion (52). Differentiating Z with respect to x we find, for
all x € (a,b),

Ly =2y Yo Py

-1 1
cgnl) 9(2)

YN
_ sen(o)VFy "
VI+2nd '

where we have used definition (48) of ¢g(®). Moreover, by
definition we have Y = sechZ, and it follows that 2n® =
2nPoY? = 2n(2Ho/N)sech® Z. Defining

v:=4nHy/\, (55)
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we rewrite equation (54) as

sgn(z)v/Ho
V1i+v sech®’Z

Due to equation (52), we have Z(x = 0) = 0. We can
therefore solve equation (56) as follows.

T Z
sgn(m)\/Ho/ dz = / V1+wvsech’Z dZ,  (57)
0 0

implying

sinh Z
sgn(z)y/ Hy = arsinh (%)
Vv sinh Z
Vv + cosh® Z .

Now we can determine the values of a and b. In the limit
Z — 400, the definition of the coordinate transforma-
tions, as per equation (52), dictates that we must have
either x — a or x — b. At the same time, equation (58)
dictates that we must have x — 400, because the arctan
function on the r.h.s. of equation (58) is bounded, whilst
the arsinh function diverges to +oo. It therefore follows
that (a,b) = R.

The next step is to rewrite equation (58) as an ex-
pression for x in terms of @, so that we can invert the
expression to find @(z) for x € R. By definition (52)
we have cosh? Z = 1/Y? = &,/®, and it follows that
sinh® Z = cosh? Z — 1 = (®y/®) — 1. Since Z is by defini-
tion non-negative, we must take the positive square root,

sinh Z = /(®o/P) — 1. Then equation (58) becomes

1— (/%)
(1+v)(2/Po)

v(1—(9/%0))
L+ v(®/®y)

+ /v arctan ( (58)

sgn(x)y/ Hox = arsinh

+ /v arctan (59)

We claim that, given &g > 0 and = € R, equation (59)
uniquely determines a value of @ > 0. The proof is as
follows. If = 0, then immediately from equation (59)
we have & = &y, and we are done. If x # 0, consider the
function

1— (9/®0)
(1+v) (/Do)

v(1—(2/%0))
14+ v(P/Py)

G(®P) := arsinh

—sgn(z)V/Ho =, (60)

+ /v arctan

where x and @, are parameters. Differentiating equa-
tion (60) with respect to @, we find

g 1

g 1+ v(P/Pg)
dd 2

for @ > 0.
1 —(®/%)

<0 (61)
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Thus, G is strictly decreasing for @ > 0. Since G(®) — oo
in the limit ® — 0, and G(®g) = —sgn(x)v/Hy = < 0, and
G is continuous, we must have G vanishing at exactly one
value of @ € (0,®y). This concludes the proof. Moreover,
we observe that in equation (59) the lh.s. is invariant
under x +— —z. Thus, on R we have &(—z) = &(x).

In practice, given any @y > 0 and = € R, we can com-
pute @(x) by locating the zero of G(@). However, the value
of @ cannot be freely chosen. Instead, it is determined by
the normalisation condition (45) which, since ®(x) is an
even function on R, now reads

oo o Qi
1:2/ @(x)da::Z/ —x dZ,
0 Z=0 Zz

where the Z; is the positive-z branch of Z,, as per equa-
tion (56). It then follows that

(62)

> Py/1 h?Z
1=2 / rrseeh s g, (63)
0 VHo
Using & = &, sech?Z, we deduce
/H oo
0 — sech?Z V1 + v sech’Z dZ (64a)
2% 0
:1+(1—|—V)arctan\/§. (64b)

2 2,/

Multiplying equation (64b) by 2./v, replacing Hy by
AP /2, and replacing v by 4nHp/A = 2ndy, we obtain
the following transcendental equation for @.

VAN = /20D + (1 + 2nPy) arctan /2nPy.

To show that exactly one solution to equation (65) exists,
we consider the function

F(®o) = /2nPo

(65)

+ (1 + 2ndo) arctan /20y — \/ An. (66)
Differentiating F(®¢) with respect to @¢, we find
dF 1
— =2 tan/2nPy | >0
d®g K (\/277—450 T aretan ven 0>
for &9 > 0.  (67)

This means F(Py) is strictly increasing for o > 0. Since
limg, 0 F(Po) = —v/An < 0, and F(Py) — oo in the limit
Py — o0, and F is continuous, we must have F vanishing
at exactly one value of @y > 0. In practice, given param-
eters A and 7, we can compute @y by locating the zero
of F(®p), and @ uniquely determines the energy eigen-
value, Hy = A®y/2. We can then feed the value @y into
equation (59), and then for every x € R we can find &(x)
by means we have already described. In summary, given
A and 7, equations (46), (59) and (65) together constitute
an analytical solution to equation (44); and as we have
already proven, it must be the unique global solution to
equation (44) which satisfies all the constraints we have
imposed.
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We note that if the parameter n — 0, we should
recover the solution to the nonlinear Schrodinger equa-
tion, given by equation (38); and indeed we do. Firstly,
in the limit n — 0, we have v — 0, which means we
cannot use equation (65) to determine @g, because the
derivation of equation (65) involved a multiplication by
Vv. Instead, we must extract @¢ from equation (64). In
the limit v — 0, equation (64a) is simply \/A/(8Py) =
fooo sech?Z dZ = 1.1t follows that &y = A/8, agreeing with
equation (38). Then equation (46) determines the eigen-
value Hy = APy/2 = A\?/16, again agreeing with equa-
tion (38). Finally, when v — 0, equation (59) is simply

sgn(x)\/ Hy « = arsinhy/(®o/P) — 1, (68)
which is equivalent to
®y/P = 1+ sinh®(y/Hoz) = cosh®(\z/4), (69)

so @ = @y sech?(\z/4), agreeing with equation (38) once
more.

The eigenvalue Hp provides a link between @(x) and
the binding energy of the stationary polaron. By equa-
tions (11), (17) and (30), where &k = 0 and £ = xR, the
polaron state is written in terms of local excitations as
@) = Zg:() an Al [vac), and in the limit N > 1, we have

it
an = ¢(n — N/2) exp 7 (Jo—2J1 — HoJh) |,

(70)

So the stationary |¥) solves ifi d|¥) /dt = (He + Hiny) |¥)
as well as satisfying ih d|¥) /dt = (Jy — 2J; — HoJ1) |P).
By definition, the polaron’s binding energy, E},, is its total
internal energy measured with respect to Jy. In units of
J1, we have

(P|He + Hy, + Hie|¥) — Jo

FEy =
b 7

(71)

An expression for (H,) in terms of &(z) can be found by
using equations (4) and (24). Since the polaron is station-

ary, the kinetic part of (Hp) is zero, so we have

(H,)  MQ*R? '
Ji 203

(Un1 — un)2

o6 N2 - 2
=3 2 (= Dlbnnl* = (@ +1) o]
n=0
A N-1
= 23 [B= 0P Wil + (8 4+ 17 [l
n=0
N-1
+0 > [ [l (72)
n=0
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It then follows that

Eb:—2—H0+<Ij—1p>
)\Nfl ) )
:-2—Ho+§;) [((6- 1?80 +1-N/2)

+(B+ 1) o(n - N/2)%]

N—-1
+1 ) ®(n+1-N/2) &(n— N/2). (73)
n=0

We have made use of definition (28) of A, 7, the fact that
[thn| = |dn| for all n, as well as the fact that |¢,|* is ap-
proximated by ®(n — N/2). Figure 1 shows how various
aspects of the stationary polaron depends upon the sym-
metry parameter 3, and the effective coupling parameter
A. Recall that the former is a measure of the spatial sym-
metry of the electron-phonon interaction, and the latter
measures the strength of this interaction. These are the
only two parameters that affect the stationary polaron’s
physical properties (as n is merely a convenient combina-
tion of B and ).

Figure 1 shows how @y and the half-width of the po-
laron varies with 4 and A. We define the half-width as the
distance between the two z-values at which ®(z) = @¢/2,
and it is a measure of how localised the polaron is. As
one would expect, the half-width is negatively correlated
with @¢, which is the maximum height of @(z). The fig-
ure shows @ increasing with A, and half-width decreasing
with A, and the rate of change of each quantity is greater
given larger values of 3. That is to say, the more spatially
asymmetric the electron-lattice interaction is, the more
influential A is. The figure also has the following implica-
tion on the accuracy of @(z) as an approximation to the
discrete stationary solution to equation (19). In a discrete
solution, 1, = exp(ipHyT)dy, the physical interpretation
of |¢n|2 is the probability of the electron being localised
at the nth lattice site. Therefore, the normalisation con-
dition is defined in terms of a sum, Zﬁfzo [nl? = 1, and

consequently we must have |¢;n|2 < 1 for all n. When a
continuum solution @(z) is used to approximate the dis-

crete one, we have the relation &9 = max |1/1n|2. Thus, any
continuum solution with @y > 1 cannot be reliable as an
approximant. When 3 = 1, @y exceeds 1 if A\ is greater
than 8, since ¢y = A/8. On the other hand, when g = 0,
we computed @ for A up to 100, and @y remains less
than 0.6.

In Figure 1 we see that Hj increases with A whilst
the polaron’s binding energy gains magnitude, meaning
the larger A is the more energy is required to break up the
polaron. Once again, the larger ( is, the more rapidly these
quantities vary with \. We note that the thick (black)
curve for Hy, corresponding to # = 1, is exactly the graph
of Hy = A\2/16, as per equation (38). In Figure 1, we see
that a polaron which is more strongly bound has a larger
@ and a smaller half-width, i.e., it is more localised.

The gradient of curves in Figure 1 vary with 3, and
the variation is more pronounced when ( is close to 1.
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Fig. 1. The height ®g of the analytical @(z) solution (left figure, right axis), the polaron half-width (left figure, left axis), the
energy eigenvalue Hy (right figure, right axis), and the polaron binding energy (right figure, left axis), according to analytical
solutions @(z). The dependence of each quantity upon 8 and X is represented by a family of curves. The thick (black) curve
always corresponds to 8 = 1, and as (3 decreases towards 0, the thin (blue) curves, corresponding to 3 = 0.9,0.8,...,0.1,0,

become either steeper or shallower.

This suggests that the system is highly sensitive to vari-
ations in # when [ is large, but not so when ( is small.
Moreover, as A decreases, curves corresponding to differ-
ent values of 3 begin to converge; specifically this happens
when A =~ 1. This suggests that when A is small, the ex-
tent to which the electron-phonon interaction is spatially
symmetric has little bearing on the physical properties of
stationary polarons.

3.2 Numerical solutions

In this section we solve equations (29) and (31) directly,
using a numerical scheme, but not without the help of
analytical results from Section 3.1. We then compare the
resulting stationary polaron states with the ones we ob-
tained via continuum approximation.

Expanding equation (29) using the definitions of A,
and A [,]?, we have

— Hotn + (i1 + Pn1 — 20n) + A |ton]* ¥

1 (Insal® + W f = 2[wal’) =0, (74)

Any solution 1, to equation (74) is an attractor of the
following map [27].

(75)

Y = o

where

H(Wn) := (Ynt1 + o1 — 20n) + Xl ¥

0 ([t + Wi —2al’) . (760)
N

Il = | 3 Hln) (76b)
n=0

We take the approximate solution from Section 3.1 as ini-
tial guess, and repeatedly apply equation (75) until con-
vergence. When converged, v, is the stationary solution
to equation (74), and ||H ()] is equal to Hy. In practice,
on a grid with N = 200, convergence is typically reached
within O(10°) iterations, which amounts to O(10') sec-
onds of computing time. We have computed stationary
solutions for various 8 and A, and some results are pre-
sented in Figure 2.

Figure 2a contains information about two key aspects
of the stationary polaron state: the electron probability
distribution, and the polaron binding energy. Qualita-
tively speaking, it is in agreement with predictions of the
continuum approximation, as per Figure 1: as \ increases,
the polaron becomes more localised, and more strongly
bound. Moreover, the effect of increasing A is more pro-
found given larger values of 3. However, further compari-
son between Figures 1 and 2a reveals a noteworthy differ-
ence. When 3 = 1, &g is a linear function of )\, whereas
Figure 2a suggests that max |z/1n|2, which is approximated
by @y, is not linearly dependent on A. In fact, given any J3,
max |1,,|* grows significantly faster with A than Figure 1

predicts. Despite that, the growth of max|wn|2 in Fig-
ure 2a eventually stalls, when A becomes sufficiently large.
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Fig. 2. (a) The maximum localisation probability max |1, |? (left figure, right axis), and polaron binding energy (left figure, left
axis), as functions of § and A. The curves for 3 = 0 largely overlap those for 3 = 0.2, so for practical reasons they are plotted

on separate scales. For each value of 3, we are interested only in those A for which max |y,

2 .
|” is not too close to the extremes,

i.e. 0 and 1. (b) Stationary solutions |1/Jn|2 (right figure, right axis), and the associated u, (right figure, left axis). Solutions are
shifted along the n-axis, to avoid overlap. Thick lines: numerical solutions, with A = 1.0 dotted (red), A = 2.6 solid (black),
A = 4.4 dashed (blue); from left to right: 8 = 0,0.2,0.6,0.92, 1. Thin lines: analytical solutions, with A = 2.6; from left to right:

#=0,0.2,0.6,0.92, 1.

This is a manifestation of a fundamental difference be-
tween the continuum and discrete equations, which we
discussed in Section 3.1: the continuum equations place
no limit on how large @ can be, whereas the discrete sys-
tem limits max |¢n|2 to 1.

Figure 2b shows a selection of [,|* solutions. Com-
paring all the dotted (red) lines, which correspond to
A = 1.0 at various values of §, we see that they are
essentially identical. This confirms the belief that when
A is close to 1, systems with different (-values unify.
The figure also shows some stationary solutions to the
other half of equation (19), namely w,,, which is expressed
in terms of the stationary |¢n|2 solution as per equa-
tion (24). Recall that physically w,, represents the dis-
placement of the nth molecule from its equilibrium posi-
tion. In order that the point-dipole model for lattice units
is valid, the lattice distortion must satisfy the condition
[n+1 — upn| < 1 [19]. This condition is indeed fulfilled in
the stationary polaron state, since according to Figure 2b
we have max [u, 11 — up| ~ O(1072).

Comparing all the dashed (blue) lines in Figure 2b,
which correspond to A = 4.4 at various values of (3, en-
ables us to make the following observation. When g = 0,
the u, solution is centred at the location of max [1,|?, in
the sense that its graph is rotationally symmetric about
n = 80. This agrees with our intuition that when 5 = 0,
i.e. when the electron-phonon interaction is spatially sym-
metric, the electron in the stationary state causes equal
lattice distortion to its left and right. As § increases, the
maximum magnitude of u,, remains the same, but the cen-
tre of u,, shifts away from the location of max [¢,,|?, in re-
sponse to the decrease in spatial symmetry. When g =1,

the molecule at the location of max [t,,|* (n = 120 in this
case) is barely displaced, whereas molecules to the right
of this point are displaced considerably. Now, the poten-
tial energy in the lattice is a sum over terms of the form
(Unt1 —un)?, which is the square of the gradient of the u,
graph at site n. In the steady state, this gradient is zero
except at a few sites around the location of max |1/)n|2, and
it is clear that solutions corresponding to larger values of 3
have steeper gradients there. We therefore conclude that,
in the stationary state, systems with greater spatial asym-
metry store more potential energy in the lattice.

In Figure 2b we also see a comparison between some
|¢;n|2 solutions and their counterpart continuum approx-
imations, @(z). In particular, we look at the thick solid
(black) lines and their accompanying thin solid (black)
lines. The comparison reveals that, fixing A, in this case
A = 2.6, &(x) is a more accurate approximant to |wn|2
when £ is smaller. As 3 approaches 1, it becomes appar-
ent that @(z) under-estimates the height of the |ib,,|* pro-
file. If X is sufficiently large, however, @(x) becomes an
over-estimate of the profile height. This all comes down
once again to the fact that the continuum equations do
not limit the height of the ®(z) solution.

4 Dynamical polarons at zero temperature

In this part of the study we explore properties of polarons
which propagate along the peptide chain, under an exter-
nal forcing €(7), and zero temperature (f,,(7) = 0). Physi-
cally, €(7) may represent the strength of a time-dependent
electric field. We solve equation (19) as an initial value
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Fig. 3. Some polaron trajectories, with § = 1 and A\ = 3.0,
under either a constant or a periodic forcing e. Solid (black)
line: € = 0.1. Dashed (blue) line: € = 0.1sin(277/T"), T = 500.
1000 units of 7 is 1.8 ns.

problem, using the stationary v, and w,, solutions which
we computed in Section 3.2 as the initial configuration
of the system. We prescribe a suitable €(7), setting ny to

the location where the stationary |ib,|> attains its maxi-
mum. Then we integrate the system forward in time using
the 4th-order Runge-Kutta method. To ensure numerical
stability, the integration time-step is set at A7 = 0.01.

As we forward-integrate the system, we keep track of
several scalar quantities associated with the polaron, such
as its half-width and binding energy. Most importantly,
we keep track of the polaron’s position, defined as fol-
lows. If |1,|? attains its maximum at lattice site i, then
polaron position is the vertex location of the parabola ex-
trapolated from three points: (7, [¢z]?), (7 — 1, |va—1/?),
(n+1,|ns1]?). We note that, if the polaron is dynamical,
then the stationary solution given by equation (70) is no
longer valid, and therefore we cannot take equation (73) as
the expression for the binding energy. Instead, the binding
energy F}, as per equation (71) will be computed directly
from the numerical solutions.

4.1 Constant or periodic electric fields

The most obvious choice of €(7) is a constant,

e(r)=e>0 forr>0. (77)

Using moderately-localised stationary states (max |1/Jn|2 =
0.64) as initial conditions, we computed polaron trajec-
tories under various values of €. Our results show that,
given § = 1 and A = 3.0, a constant forcing of any
€ ~ 0(1072) induces nothing but small oscillations of the
polaron around its initial position. An example of trajec-
tory is presented in Figure 3.

As € is increased beyond 0.1, we find that eventu-
ally the forcing does become strong enough to dislodge
the electron from its potential well, and propel the po-
laron along the peptide chain. However, as the polaron
propagates, the magnitude of its binding energy decreases
rapidly, and the polaron “delocalises”, i.e. breaks up into
unbound components, within several hundred time units.
A direct manifestation of the polaron’s energy loss and
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eventual delocalisation is that the |7ﬁ/Jn|2 profile loses height
and gains local peaks at lattice sites far away from the
global maximum. For the sake of consistency, throughout
the remainder of this study we shall say that a polaron has
delocalised if its maximum height drops to below 0.1, as it
must then be the case that other local peaks have magni-
tudes comparable to the global maximum. Figure 4 shows
an example of a constant forcing large enough to cause po-
laron displacement, and it illustrates the resultant rapid
delocalisation of the polaron.

Figure 4 shows the trajectory of a polaron which,
within roughly 600 time units, is displaced by just over
300 lattice sites. Its binding energy steadily decreases in
magnitude, until the polaron delocalises at 7 ~ 600. Mean-
while, Figure 4 shows the electron probability distribution,
[t |?, at the time of delocalisation. This |, |* profile has
evolved from an initial configuration possessing a maxi-
mum height of 0.64, and no local peaks apart from the
global maximum.

If the polaron’s binding energy decreases in magnitude,
then the polaron’s ability to transport energy is dimin-
ished. Beyond the example shown in Figure 4, all our re-
sults are consistent with the hypothesis that, regardless of
B and A, a constant € causes the polaron to undergo either
small periodic oscillations, or rapid losses in energy. We
would like to find ways to displace the polaron without
significant energy loss. Therefore, we must look for forms
of € other than constants. The next most natural choice
of € is periodic,

e(1) = Asin %TT for 7 > 0, (78)
where A is the amplitude and 7" is the period. Physically
this may represent an electromagnetic plane wave which
is monochromatic, i.e. coherent. Under periodic ¢(7) with
A up to 0.2, regardless of § and A\ we find that the po-
laron simply oscillates about its initial position. The po-
laron’s oscillatory motion has a period which coincides
with T, and an amplitude which is positively correlated
with A. An example of such trajectories is shown in Fig-
ure 3. While the polaron remains highly stable over time,
its position averaged over its periodic remains constant.
Thus, if we want polarons which transport energy from
one lattice site to another, we must again look for an al-
ternative form of ¢(7).

4.2 Periodic electric fields with non-zero mean

Having studied the effects of constant forcing and periodic
forcing in Section 4.1, and discovered that neither serves
to displace the polaron with minimal energy loss, in this
section we consider forcing of the form

2
e(r) = e+ Asin .

7 (79)

Equation (79) represents the combination of the two types
of forcing considered previously, with a constant compo-
nent and a sinusoidal one. One may also think of €(t) as a
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Fig. 4. Polaron propagation under 8 = 1,\ = 3.0, and a constant ¢ = 0.15. (a) The polaron’s position (left figure, right axis)
and binding energy (left figure, left axis) as functions of 7. (b) The |1/)n|2 profile of the polaron upon delocalisation (right figure).

mean-shifted periodic forcing (MSPF). In particular, the
mean € is chosen to be lower than the constant forcing e
which is required to displace the polaron, in the manner
of Figure 4. Therefore, € on its own would not give the
electron enough energy to escape its potential well. But
we hope that the component A can periodically push the
electron energy over the threshold, resulting in polaron
motion. Another possible advantage of this setup is that
A may periodically lower the electron energy, slowing it
down and giving the lattice time to “catch up”, thus mak-
ing the polaron motion more sustainable than it would be
under a constant forcing.

Mathematically, €(7) depends on three independent
parameters, €, A and T. Before investigating the effect of
each of these parameters, we present Figure 5, which is a
direct comparison with Figure 4.

We have replaced the constant forcing e = 0.15, which
resulted in Figure 4, with an MSPF which has the same
maximum amplitude as before. The difference is that now
this maximum amplitude is reached once every period T'.
Figure 5 shows that, within roughly 10 periods, the po-
laron is displaced by nearly 400 lattice sites. Contrary to
the uniform manner in which the polaron moves in Fig-
ure 4, now the polaron moves towards one end of the pep-
tide chain and then the other, within each period of €(7).
The overall displacement of the polaron is due to the fact
that each movement to one end of the chain is larger than
the subsequent swing back the other way. We note that
while the polaron moves slightly further compared to Fig-
ure 4, its lifetime, i.e. the amount of time elapsed before
delocalisation, is much longer. Overall, the polaron in Fig-

ure 5 propagates with a lower (average) velocity, V', de-
fined by

V = |average position over final complete period
— initial position]

/[number of complete periods x T7, (80)

where the numerator is the displacement of the polaron,
which we denote by D. Our results show that, of the pa-
rameters €, A and T, the dominant factor which deter-

mines the polaron’s velocity is the constant component €.
We will discuss this in more depth in relation to Figure 6.

Figure 5 also shows how the polaron’s binding energy,
Ey, varies in time. Following an initial drop in magni-
tude, E}, mostly oscillates between —0.75 and —1.5, until
another sharp decrease in magnitude leading up to delo-
calisation at 7 ~ 4900. There is an important observation
to be made here. In Figure 4, we see that when the po-
laron reaches lattice site n = 300, F}, is about —0.6. In
Figure 5, the polaron’s average position over the 6th pe-
riod is roughly 300, and the average binding energy over
this period is —1.2. That is to say, under the MSPF, the
polaron is carrying twice as much energy when it reaches
n = 300, compared to when it reaches n = 300 under the
constant forcing. Even though the constant forcing gets
the polaron to n = 300 in less time, we consider the MSPF
a better mechanism for polaron transport, because the po-
laron binding energy is more stable. Indeed, the same can
be said when the destination n is anything larger than
30. If the destination is n < 30, then the constant forcing
takes the polaron to m in such a small amount of time
that it causes no more variation in binding energy than
the MSPF does. In general, all our results are consistent
with the hypothesis that, by splitting a constant forcing
into constant and sinusoidal components, we lower the po-
laron’s velocity but increase its stability and lifetime. We
say that, compared to the constant forcing, the MSPF is
a better long-distance transport mechanism, where speed
can be sacrificed for energy efficiency.

In Figure 5 we see another aspect of the polaron’s mo-
tion, namely, how the height and half-width of the |¢;n|2
profile vary with time. Following an initial decrease, the
profile height, max|wn|2, mostly oscillates between 0.2
and 0.4, until a sudden drop to 0.1, leading to delocalisa-
tion. Meanwhile, the half-width mostly oscillates between
1.5 and 4, following an initial growth. The peaks in the
half-width, as well as the troughs in max |¢n|2, occur pre-
cisely when the polaron turns from moving in one direction
to moving in the other. This suggests that when the po-
laron accelerates, it “spreads out”, and so the half-width
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Fig. 5. Polaron propagation under 3 = 1, A = 3.0, and an MSPF, ¢(7) = 0.025 + 0.125 sin(277/500). (a) The polaron’s position
(left figure, right axis) and binding energy (left figure, left axis) as functions of 7. (b) The height (right figure, right axis) and
half-width (right figure, left axis) of the |, |* profile as functions of 7.

widens and max |1/)n|2 drops. We observe this phenomenon
in all our results.

Based on our observations, we theorise that a polaron’s
directed motion may be explained physically as follows.
Since the forcing €(7) is the effect of an electric field, it
first-and-foremost provides the electron with extra energy.
This is evident in the dramatic energy variation during
the first period of €(7) (see Fig. 5). Following this, it be-
comes much easier for the electron to overcome the sig-
nificantly diminished polaron binding energy, E},. This is
why the onset of polaron motion always follows a drastic
drop in magnitude of E},. Whenever |e(7)| becomes large
enough to give the electron sufficient energy to overcome
Ey,, the electron is dislodged from its potential well and
propelled along the lattice. If the electron-lattice coupling
is strong enough, then the lattice distortion can keep up
with the electron, and so the polaron can remain intact.
Whenever |e(7)| drops below the binding threshold, the
electron-lattice interaction slows down the electron and
causes its probability distribution to spread out. This is
why the half-width of [¢,|* always peaks at times when
the polaron’s instantaneous velocity is zero. If |e(7)| re-
mains below the binding threshold for long enough, then
the polaron’s position can plateau, as is seen in Figure 6,
particularly in the lowermost solid (black) lines in Fig-
ure 6. If €(7) has a large enough periodic component A,
then it is possible for |e(7)| to overcome the threshold
twice per period: once with ¢ > 0, once with € < 0. If the
electron moves towards large n in the € > 0 case, then it
will move towards small n in the € < 0 case. This explains
the backwards swing exhibited by some polaron trajec-
tories during each period of motion. The fact that € # 0
ensures that the electron always spends more time moving
one way than the other, hence the overall directedness of
the polaron trajectories. This point is most clearly demon-
strated by the trajectories in Figure 6 where the period
T = 2000.

Within each subfigure of Figure 6, we can compare tra-
jectories with the same A (represented by line type) but
different (3 (represented by starting position). This reveals
the effect of varying the spatial symmetry of electron-

lattice interaction. A greater spatial asymmetry, i.e. a
larger (3, causes the polaron to be more susceptible to dis-
placement. Also within each of subfigure in Figure 6, we
can compare trajectories with the same 8 but different A.
The larger A is, the more the polaron oscillates back and
forth during each period of motion. We can also compare
a trajectory in Figure 6a with a certain A and [ to that
in Figure 6b with the same A and 3. This suggests that
the overall velocity of the polaron is determined by €, in
the sense that the larger € is, the more the polaron moves
per unit time. Finally, we can compare a trajectory in Fig-
ure 6b with a certain A and (3 to that in Figure 6¢ with the
same A and 3, hoping to see the effect of varying T". How-
ever, this comparison is not particularly enlightening. We
therefore present Figure 7, which not only provides more
insight into the effect of T', but also helps to quantify our
observations, and reinforce our theories, about the effects
of € and A.

For several combinations of € and T, we examine
how the polaron’s lifetime, displacement and velocity vary
with A. The results are displayed together, in Figure 7, so
that the effects of € and 1" can be gauged also. Firstly we
consider the lifetime, 75. We computed all our numerical
solutions up to 7 = 50000, which is several times larger
than the typical lifetime of a polaron that moves under the
MSPF. If the polaron is not displaced by the MSPF, then
it is effectively permanent, in the sense that its energy os-
cillates instead of dissipating over time, and it would have
a lifetime far exceeding 50 000. Thus, in Figure 7, the life-
time of a permanent (undisplaced) polaron is represented
as T4 = 50000. For each combination of € and T, there
exists some critical amplitude, A = A., below which the
polaron is undisplaced by the MSPF. At A = A., the com-
bined magnitude of the forcing, €comp := € + A, becomes
large enough to displace the polaron, and 74 drops sharply.
This drop can sometimes result in a lifetime of only sev-
eral thousand time units - see for instance the bottom-left
subfigure in Figure 7, corresponding to € = 0.1. When €
is smaller, say € = 0.005 (top-left subfigure), the drop in
lifetime is less dramatic. As A increases beyond A., the
polaron’s lifetime drops further, if only slightly.
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Fig. 6. Some polaron trajectories under the MSPF, e(1) = € + Asin(2n7/T). (a) € = 0.02,T = 500. (b) € = 0.03,T = 500.
(¢c) € = 0.03,7 = 2000. Dotted (red) lines: A = 0.10. Solid (black) lines: A = 0.15. Dashed (blue) lines: A = 0.20. Initial
positions of trajectories have been shifted to avoid overlap. Every trajectory starting from position 200 correspond to a polaron
with symmetry parameter § = 0 and effective coupling parameter A = 7.6. Trajectories starting from position 600 correspond
to B8 = 0.6 and A = 4.9, and those starting from position 1000 correspond to § =1 and A = 3.0. \ is varied with g, in order to
keep the initial |, |® profiles unchanged, with initial profile height max |1, |> = 0.64.

Next, we look at the polaron’s displacement, D. When
A is small, the polaron does not move barring small os-
cillations, the types of which we saw in Figure 3. As A
reaches critical value A, the polaron turns from being
quasi-stationary to moving by several hundred lattice sites
during its lifetime. Evidently, the value of A. is indepen-
dent of T'. Note that we only consider the displacement of
polarons whose lifetimes are at least 27", and we set the
displacement of polarons with shorter lifetimes to zero —
see for instance the dashed (blue) lines in the centre and
bottom-middle subfigures.

Whilst the value of A. does not depend on T, the
amount of displacement caused by A. does. However, it is
unclear from our results what their correlation is. As A in-
creases beyond A, the qualitative behaviour of D is that it
decreases. This is due to the fact that increasing A causes
the polaron to delocalise more quickly, and therefore the
polaron has less time to move. To understand how A af-
fects the amount of polaron displacement per unit time, we

examine the polaron’s (average) velocity, V', as per defini-
tion (80). When A is small, V' is zero. As A reaches critical
value A, the velocity becomes typically O(10~2). Exactly
what value this critical velocity V. takes depends on € —
the larger € is, the larger V, is. As A increases beyond A,
sometimes V' simply decays away - see for instance the top-
right subfigure, where € = 0.005. Sometimes, however, V'
grows before its decay — see for instance the middle-right
and bottom-right subfigures, where € = 0.03 and 0.1 re-
spectively. Such behaviour is possible when the polaron
lifetime decays with A more quickly than the displacement
does. When this happens, there may exist some optimal
amplitude, A = Ap,, at which the polaron attains max-
imum velocity, Vi,. Ay may coincide with A. — see for
instance the top-right subfigure. Meanwhile, the middle-
right and bottom-right illustrate clearly that, for different
values of T', the critical A. remains the same, whereas the
optimal Ay, changes. Qualitatively speaking, the larger T
is, the smaller Ay, is.
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Fig. 7. Polaron lifetime 74, displacement D, and velocity V', under the MSPF, € = €+ Asin(277/7T), with symmetry parameter
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Bottom row: € = 0.1. Dotted (red) lines: 7" = 100. Solid (black) lines: 7" = 500. Dashed (blue) lines: T' = 2000.

Whilst the value of A, does not depend on 7', it does
depend on € — we see this by comparing any row of sub-
figures in Figure 7 to any other row. But how do A, and
€ correlate? Our results show that, as € grows, A. drops,
but crucially the combined magnitude €comp = € + A re-
mains roughly constant. Specifically, in the top row we
see € = 0.005 and A, = 0.167, in the middle row we have
€ = 0.030 and A. = 0.142, and the bottom row shows
€ =0.100 and A. = 0.072, each case giving €comp = 0.172
when A reaches critical. Recall that, when using a straight-
forward constant forcing € = €, there is also a threshold
value for €, below which the polaron simply exhibits small
oscillations, and above which the polaron moves at high
speed but delocalises very quickly. It is noteworthy that
this threshold is € = 0.154 (given 8 = 0.6), which is sig-
nificantly lower than the critical combined amplitude of
0.172. In other words, ¢ = 0.154 causes polaron displace-
ment, € = 0.153 does not; and if one wishes to add on

a periodic component Asin(277/7) in order to move the
polaron, one needs A > 0.019, making € + A far exceed
what € is required on its own to move the polaron. This
phenomenon is observed across all values of (.

In practice, then, what would make a good combina-
tion of forcing parameters, which propel the polaron with
decent speed but does not cause large energy dissipation
too quickly? First of all, a large € results in a large veloc-
ity but an energetically unstable polaron which delocalises
rapidly — so rapidly that it may move the polaron less far
in its lifetime than a small € does. The middle column
of Figure 7 precisely illustrates this point. Meanwhile, a
small € results in long-living polarons which can move very
far, because of how stable they are, but they would take
more time to reach the same destination, compared to po-
larons under a large €. On balance, a moderate value of €
such as 0.03 is preferable. Secondly, once a € is chosen, it
remains to choose A and T, and it is obvious that the ideal
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choice of A is the optimal amplitude, A = A,,. Meanwhile,
if T is small, such as T' = 100, A, would be large. On the
other hand, if T is large, such as T' = 2000, the value of
the maximum velocity would be small. We observe both of
these extremes very clearly in the middle-right subfigure
of Figure 7. Once again, these observations are not spe-
cific to = 0.6, but universal for all values of 8. Overall,
we believe that the best MSPF parameters which we have
tested are such combinations where € ~ 0.030, T' =~ 500,
and A ~ Ay, which, given 8 = 0.6, is A, = 0.157. We will
discuss the relationship between Ay, and 3 in Section 4.3.

We note one anomaly which we observe in Figure 7
but did not expect. When € = 0.005 (top row), if T =
2000 and A is large enough, then the displacement (and
therefore velocity) can take large negative values, meaning
the polaron moves in the opposite direction to what we
expected, and with large speeds. Whilst we are uncertain
as to what causes this counter displacement, it is certainly
another reason to reject small € and large T" when choosing
forcing parameters.

4.3 The relevance of 3

To produce Figure 7, we fixed 8 = 0.6. How would the fig-
ure have looked if 5 had been different? Our results show
that qualitatively it would exhibit the same behaviour,
characterised by critical amplitudes A., and optimal am-
plitudes Ap,. Quantitatively, the values of A, and A,
would change. It is therefore natural to investigate how
they change with 3. After all, our generalisation to the
Davydov-Scott model is manifest in the extra parameter
(. Firstly we establish the following preliminary result.

Recall that the stationary polaron, upon which we im-
pose the MSPF, is characterised by two quantities: its
probability distribution, specifically its maximum localisa-
tion probability, max |1/)n|2, and its binding energy. These
are in turn determined by the symmetry parameter § and
effective coupling parameter \. As (§ varies, so does the
value of \ required to keep max |1/)n|2 constant. This cor-
relation is shown in Figure 8. It is clear that A(3) is a de-
creasing function. We have made sure that whenever we
altered [ we also took A\ = A(f3), so that all of our moving
polarons begin as stationary states which share the same
probability distribution. An alternative would have been
to take whatever A is required to keep the binding energy
constant. Our results show that if we had decided to keep
the binding energy constant at, say, —2.5, then max |wn|2
would have been 0.53 at 5 =0, or 0.81 at § =1. It is a
central feature of our model that two stationary polarons
with the same maximum localisation probability need not
have the same binding energy, and vice versa.

Having established the relation A(3), we can study
how A. and A, depend on . We do so by fixing €
and T, and working out what A, and A,, are for various
{B,\(B)}. For instance, in Figure 7 we saw that if 3 = 0.6,
A= X(0.6) = 5.0, e =0.03 and T" = 500, then A, = 0.142
and A, = 0.157. What if we fix € and T, and vary (37
The result is displayed in Figure 9. When 8 = 0, we have
A. = 0.12, and when 8 = 1 we have A, = 0.1. In fact,
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A is minimal when 3 = 1, which suggests that a system
with antisymmetric electron-phonon interaction is most
conducive to polaron displacement by MSPF. One might
expect that a system with symmetric interaction would
be least conducive to polaron displacement, and therefore
A, should be maximal when 8 = 0. This is not the case.
We observe that A, is maximal when § = 0.6, which mod-
els a system with moderately asymmetric electron-phonon
interaction. Meanwhile, polaron velocity produced by crit-
ical forcing, V¢, is maximal when = 0.87.

The optimal amplitude, A, varies little when g is less
than 0.7, but decays sharply when 3 increases beyond 0.7,
to such an extent that it almost equals the critical ampli-
tude A.. The optimal velocity, Vi, is typically of the same
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order of magnitude as V.. When ¢ = 0.87, V;, and V, al-
most coincide.

Earlier, based on Figure 7, we asserted that the period
T of the MSPF has little effect on the value of A.. Indeed,
our results show that, if we had produced Figure 9 with
T fixed at either 100 or 2000, the A. curve would have
been virtually unaffected. We also conjectured that the
critical amplitude A, is negatively and linearly correlated
with €, so that the combined magnitude €.omp, = € + Ac
remains constant as € varies. This is supported by our
results. Indeed, Figure 9 is produced with € fixed at 0.03;
but if we had produced Figure 9 with € fixed at either 0.005
or 0.1, the A, curve would simply have been shifted along
the vertical axis, by an amount equal to the difference
between the new € and 0.03.

5 Dynamical polarons at non-zero
temperature

We study the effect of random fluctuations which result
from non-zero temperatures in the environment surround-
ing the lattice. The randomised forcing on the lattice is
represented by the normally-distributed f,,(7), which by
definition (21) must have, for 7 > 0, the following first
and second moments.

(fa(T)) =0, (81a)
n()fulr+ Am) = 382 1)
where # is the dimensionless temperature,
kp®
b= R (82)

and O is the temperature. Compared to the dimensional
F,(t) that we introduced in Section 2, the 7 which now
appears in f,(7) is a discrete index. We have followed the
standard procedure of replacing 6(t — t') by 1/Ar, up to
non-dimensionalisation constants. Beginning with a sta-
tionary polaron, which we computed numerically in Sec-
tion 3.2, we integrate the system of equation (19) forward
in time from 7 = 0. Using a random number generation
algorithm, we generate a new vector f,, before each inte-
gration step. If 6 is large, we find that it can cause large
distortions in the lattice and rapid delocalisation of the
polaron, due to excessive energy input to the system. For
appropriate values of 6, we see that the polaron’s bind-
ing energy undergoes small fluctuations, but on the aver-
age it tends to shift towards zero. After some time, the
binding energy stabilises. For example, given = 0.6 and
A = 5.0, the stationary polaron has binding energy —2.47.
Integrating from 7 = 0 with # = 0.0003, we find that after
7 ~ O(10%) the binding energy settles, on average, around
—2.15. The period of time required for a polaron to reach
such a thermal equilibrium is the thermalisation phase of
the polaron dynamics. During this phase, the forcing (1)
on the electron is kept at zero, but the electron neverthe-
less undergoes small fluctuations around its initial posi-
tion, due to its coupling to the thermalised lattice. Our
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results show that, irrespective of (3, we are unable to raise
6 > 0.001, because such a large ¢ induces excessive lattice
distortions which cause the polaron to delocalise before
reaching thermal equilibrium.

In each simulation, we integrate the system, with
e(1) = 0, until the polaron reaches thermal equilibrium.
Then we reset 7 = 0, and “turn on” the forcing e(7) for
7 > 0. We examine how the polaron subsequently moves,
under combinations of €(7) and f,,(7). Since the thermal-
isation phase raises the polaron energy, we expect that
a thermalised polaron would be easier to displace, in the
sense that it would require a smaller €(7) to displace it,
compared to the zero temperature case. Indeed, our re-
sults confirm this. To obtain our results in this section,
every dynamical simulation, with a set of chosen parame-
ters {3, A(B),€, A, T, 0}, is run 100 times, and averages of
quantities such as polaron lifetime and displacement are
then taken.

Figure 10 is to be compared directly with Figure 7,
which contained results for 5 = 0.6 and # = 0. Specifi-
cally, Figure 10 is to be compared with the solid (black)
lines in the middle row of subfigures in Figure 7, for which
two of the parameters in € = é+ Asin(277/T") were fixed:
€ =0.03, and T' = 500. We saw that, given said parameter
values, the critical amplitude was A. = 0.142. When we
have a non-zero 6 in the system, we define A, to be the
smallest A for which the average polaron displacement
(over 100 simulations) exceeds 10 lattice sites. Accord-
ing to this definition, when g = 0.6,€ = 0.03,7 = 500
and 0 = 0.0001, we see in Figure 10 that A. = 0.121,
which is significantly lower than the case of § = 0. Fix-
ing said values of €7 and 6, we find that the value of
A, depends on 8 in a manner shown in Figure 11. That
is, A. is minimal when g = 1, suggesting that an an-
tisymmetric electron-phonon interaction makes it easiest
to displace the polaron. Meanwhile, A. is maximal when
0 =~ 0.5, suggesting that, counter-intuitively, what makes
displacing the polaron most difficult is not a symmetric
electron-phonon interaction, but a moderately asymmet-
ric one. Indeed, this A.(8) function is very similar to the
one in Figure 9, where we also had € = 0.03,7 = 500 fixed,
but § = 0. Now with § = 0.0001, the A.(8) curve in Fig-
ure 11 is significantly lower. This means that, regardless
of B, a non-zero temperature makes it easier to displace
the polaron by the forcing e = € + Asin(27x7/T), in the
sense that a smaller combined magnitude €+ A is required.
It is also noteworthy that, under a non-zero temperature,
the onset of polaron motion is more gradual, in the sense
that a critical amplitude results in a very small velocity,
V.. Indeed, comparing V; in Figure 9 with V; in Figure 11,
we see that the latter is 2 orders of magnitude smaller.

More can be said about Figure 10. When we raise the
temperature to # = 0.0005, we find that the polaron is
displaced (on average) by hundreds of sites even if A = 0.
This suggests that, given § = 0.6 and € = 0.03, there
exists some critical temperature 6 = 6. between 0.0001
and 0.0005, for which just the combination of €(7) = € and
fn(7) is sufficient to displace the polaron, and no periodic
component in €(7) is needed. 6, is critical in the sense that,
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Fig. 10. From left to right: polaron lifetime 74, displacement D, and velocity V, under the MSPF, ¢ = € + Asin(277/T), and
the thermal forcing, f,(7) with temperature 6. The horizontal axis is A. Black lines: 8§ = 0.0001. Grey (blue) lines: § = 0.0005.
Each simulation of polaron dynamics is run 100 times, and the average result is shown in solid lines, while the maximum or
minimum results are shown in dotted lines. Fixed parameters: 3 = 0.6, ¢ = 0.03, T' = 500.
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500, 6 = 0.0001.

if 0 is any lower than 0., then the combination of €(7) = €
and f,(7) does not energise the polaron enough to move
it, and a non-zero A is required. Indeed our results show
that, given # = 0.6 and € = 0.03, the critical temperature
is . = 0.00032. Furthermore, we have investigated how
0. changes as we vary  and €, and the results are shown
in Figure 12. We observe the qualitative trend that, the
larger € is, the less thermal energy is required to make
up for the extra energy that the polaron needs in order
to move. We also observe that, in general, the larger j is,
the less thermal energy is required to displace the polaron.
This fits in nicely with our understanding that, when 3 is
close to 1, we have an electron-phonon interaction which is
biased towards one end of the lattice, making the electron
more susceptible to displacement.

S~ T S 1
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e =0.1

0 0.2 0.4 0.6 0.8 1
B

Fig. 12. Critical temperature 6. as a function of 5 and €, given
A=0.

In Figure 13 we present a typical polaron trajectory
when 6 = 6.. Under this critical temperature, some sim-
ulations would produce no polaron displacement at all,
but most trajectories would be similar to that in Fig-
ure 13, clearly showing a directed movement. We propose
to explain the shape of these trajectories as follows. First
of all, the combined magnitude of the MSPF would be
much lower than what is required to move the polaron
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Fig. 13. A polaron trajectory (right axis), and the correspond-
ing time-evolution of the polaron’s binding energy (left axis),
given = 0.6, =0.03, A =0, and § = 6. = 0.00032.

under zero temperature. In Figure 13 for example, we have
€+ A = 0.03, whereas the critical value under zero tem-
perature, as we discovered in Section 4.2, is é+ A = 0.172.
Even when there is a non-zero temperature, the polaron
still spends the majority of its lifetime oscillating around
its localisation site by small amounts. However, occasion-
ally the random forces on the lattice sites in the vicinity
of the electron causes a large distortion, such that the
effective potential barrier for the electron is significantly
lowered, and the electron can escape the well. Once it does
that, it is propelled towards one end of the lattice by €.
But before the electron has time to move far, the random
forces may have further distorted the local lattice sites in
such a way that a high potential barrier is restored. This
then traps the electron again, giving the polaron time to
recover its integrity, before the next random time at which
the electron jumps out of its potential well. This explains
why a trajectory under the critical temperature appears
jagged, showing the polaron “hopping” one or two sites
at a time, in stark contrast with the smooth and regular
polaron motion exhibited in Figure 6.

6 Discussions and conclusions

In this study we have presented a new mathematical model
describing polaron dynamics in linear peptide chains. The
model is dependent on a symmetry parameter, 3, which
measures the extent to which the interaction between the
polaron’s electron and phonon components is spatially
symmetric. We have shown that when ( takes its extreme
values, 0 and 1, the model reduces to existing ones for
which it was assumed that the electron-phonon interac-
tion was, respectively, symmetric and antisymmetric. We
have justified the physical neccessity of including (3 in the
model, in that one should not simply assume the electron
to be coupled equally strongly to lattice points on either
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side, or to be coupled only to the lattice point on one
side. Instead, the spatial symmetry should be determined
by the adjustable parameter .

Apart from (§, we have also identified two composite
parameters which are most vital to the intrinsic prop-
erties of the polaron. Firstly there is the adiabaticity
parameter, p, measuring the characteristic time scale sep-
aration between the electron and phonon, which we justi-
fiably fixed throughout the study. Then there is the effec-
tive coupling parameter, A, measuring the strength of the
electron-phonon interaction. The combination of 3 and A
determines the two aspects of the stationary polaron: its
maximum localisation probability, and its binding energy.
We have computed both of these quantities as functions
of B and \. Moreover, in the infinite lattice limit, we have
obtained stationary polaron solutions by analytically inte-
grating the system, and the results are in good agreement
with our numerical solutions on a finite lattice.

Our main results relate to using an external forcing to
displace the polaron, in a manner which causes minimal
energy loss and which, crucially, is directed. Such polaron
dynamics could be achieved only if the electron is dis-
lodged from its self-trapping potential well, and the local
lattice distortions propagate coherently with the electron,
and some mechanism exists which ensures the electron al-
ways moves towards one end of the lattice. If the second
condition is not met, then over time the electron prob-
ability density function would become broader, leading
to delocalisation of the polaron. We have found that a
constant external force, €, on the electron is insufficient
for displacing the polaron, unless € is larger than some
threshold value, but then the forcing causes rapid energy
loss and delocalisation. We have also found that a sinu-
soidal force, Asin(277/T), on the electron is never suffi-
cient for displacing the polaron, throughout the range of
A that we tested. We then combined the constant and
sinusoidal forces, resulting in the mean-shifted periodic
forcing (MSPF), ¢ = € + Asin(2n7/T). We have discov-
ered that, for each € which is insufficient on its own to
displace the polaron, there is some critical value A., such
that the polaron is displaced if and only if A > A.. There
is also an optimal value A,,, such that the polaron at-
tains maximum velocity at A = A,,. The value of A, is
irrespective of the period T', whilst A, is negatively cor-
related with T'. As € is decreased, A, increases, in such
a way that the combined magnitude € + A, remains con-
stant. This suggests that there is a certain amount of extra
energy that the electron needs in order to overcome the
polaron binding, and how much of it comes from the con-
stant or sinusoidal part is inconsequential, as long as the
two parts combine to a large enough overall amplitude.
Nevertheless, the split between € and A does determine
the manner in which the polaron propagates, specifically
its velocity and stability. The velocity is predominantly
determined by €, and positively correlated with it; but the
stability of the polaron is negatively correlated with €. By
comparing three sets of {€, A} with the same combined
€ + A, namely {0.005,0.167},{0.03,0.142},{0.1,0.072}
(while keeping all other parameters fixed), we found that
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the combination {0.03,0.142} produces optimal balance
between polaron velocity and stability.

We have examined how the aforementioned phenom-
ena depends upon 3. To do so, we needed a way of isolat-
ing the effect of varying . This posed a difficulty, because
if we were to fix A\ and vary 3 then both the maximum
localisation probability and binding energy of the station-
ary polaron would change. We would then be comparing
dynamical behaviours of dissimilar polarons. We therefore
decided to vary A with 3, in a way that allowed us to gener-
ate a set of stationary polarons, one for each combination
of {6, A(8)}, such that they all had the same maximum
localisation probability. Then we launched these polarons
using the same external forcing and compared the results.
We have found that § = 1, representing a spatially an-
tisymmetric electron-phonon interaction, produces a po-
laron which is easiest to move, in the sense that the least
amount of forcing is required. We have also found that the
symmetric model, 8 = 0, does not make the polaron most
difficult to move (8 ~ 0.6 does that). This hints at the
existence of some intrinsic mechanism in the § = 0 model
which pushes the electron towards one end of the lattice,
despite it being coupled to the other end equally strongly.

We have also studied the MSPF under non-zero tem-
peratures, 6§ > 0. The manifestation of thermal effects is
random forces on the lattice points. We have found that
a non-zero 6 facilitates polaron propagation, in the sense
that it lowers the critical amplitude A., for any given €.
Moreover, a non-zero 6 results in a gradual onset of po-
laron motion, meaning the rate of change of polaron veloc-
ity with respect to A near A = A, is small, compared to
the onset under € = 0. Our results have also shown that,
whenever there is polaron propagation, whether 8 = 0 or
0 > 0, the relative displacements between neighbouring
lattice points remain under O(10~2). This is a necessary
condition which allows us to model the lattice points as
point dipoles.

Some of the choices of parameters in the MSPF may
be justified physically as follows. It is well known that
across the plasma membrane of a living cell, a resting
membrane potential is maintained by intercellular chemi-
cal processes [28]. It is also well known that within the
plasma membrane there exist highly stable transmem-
brane regions of proteins, for instance the human pro-
lactin receptor 2N7I [29], and the rat monoamine oxi-
dase A 105W [30], both of which are a-helical struc-
tures spanning the entire membrane width. Given a con-
stant potential difference of AV across a linear, homoge-
neous, isotropic dielectric medium with constant width d,
the effective electric field inside the medium is given by
Ey = AV/(kd), where k is the dielectric constant (a.k.a.
relative permittivity) of the medium [31]. Assuming the
plasma membrane is such a medium, we can then at-
tribute the physical origin of € to the resting membrane
potential, and calculate € using equation (21), namely
€ = qEoR/(h§2). For many cells the values of the Fy and
d are well established. As an example, one may look at
human red blood cells (erythrocytes), one of the most
widely studied cells in nature, and point to [32] for the
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value Ey = —8.4 mV, as well as [33,34] for d = 78 A.
However, the value of x for a membrane is highly con-
tentious, due to the fact that it depends sensitively upon
a large variety of biophysical attributes of the membrane,
such as hydration [35], pH value [36], and structural sta-
bility [37]. In a recent review, it was reported that the
value of s in literature ranges from 1 to 40 [38]. Feeding
these values of Ejy,d and k into the equation for €, we
find that € ranges from 0.0033 to 0.13. We have taken care
to ensure that in this study the values of € falls strictly
within this range. For a physical origin of the periodic
term, Asin(277/T), one could look to common electro-
magnetic radiations which fill the environment around us
in the modern age, such as the radiation from telecom-
munication transmitters. In particular, the values of T
which we have considered, 100, 500 and 2000, respectively
match the frequencies of the IEEE 802.11ad protocal Wi-
Fi band, the K, band frequencies for satellite communica-
tions and broadcasting, and the UHF band frequencies for
cellular communications [39,40]. However, the amplitudes
of the aforementioned radiations are much smaller than
the values of A for which we have observed noteworthy
results. For instance, treating the mobile telephone trans-
mitter as an omni-directional dipole with peak power P,
we can estimate the amplitude A of its output waves
at operational distance d, by using the well-known for-
mula P/(4wd?) = egcA?/k, where €, ¢, k are the vacuum
permittivity, speed of light, and relative permittivity of
the medium, respectively. Feeding P = 1 W [41] and
k < 40 [38] into the formula, we obtain dimensionless
A < 6 x 107%/(d/m). This means that in order to ob-
tain A = 0.1, one needs the operational distance d to be
O(107°) metres, which is unrealistic. It is therefore clear
that, in a real cell environment, the effect on a polaron
due to a combination of resting membrane potential and
random thermal forces are dominant over any external
electromagnetic radiation that may commonly be present.
This highlights the importance of our observation that,
given a constant electric field €, there exists some critical
temperature 6., such that the polaron undergoes directed
drift if and only if § > 6.. In other words, a combina-
tion of € and 6 can be sufficient for displacing the polaron,
in a manner which causes minimal energy loss and which
is directed, just as a combination of € and Asin(277/T)
can. It has been reported that stationary polarons formed
on 3-dimensional lattices, such as an a-helix, are more
strongly bound and therefore can be stabler during prop-
agation [42]. It is our hope that our model can be adapted
to study such 3-D systems, and that the stabilising effect
of the helical geometry will enable us to raise @, from our
current values of O(10')K to physiological temperatures.
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