https://doi.org/10.1051/epjconf/20122602003
Spallation behaviour of a Zr-bulk metallic glass
State Key Laboratory of Nonlinear Mechanics (LNM) Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Plate impact experiments have been conducted on a Zr-based bulk metal glass (BMG) using a single stage light gas gun. To understand the spallation process of the material, samples were subjected to dynamic tensile loadings of the same amplitude but different durations. Fractographs of spallation surface and fracture features were characterized and the fracture mechanism of different regions of the spallation surface was discussed. Morphology of the spallation surface in the Zr-BMG exhibited a typical equiaxial cellular pattern and porous microstructure. These experiments revealed that, subjected to hydro-tensile stresses, the microdamage of the spallation occurred in the Zr-BMG is microvoids; the spallation in the Zr-BMG is resulted from nucleation, growth and coalescence of microvoids; and the time needed for these microvoids nucleation is less than 100 ns with a stress amplitude of 3.18 GPa.
© Owned by the authors, published by EDP Sciences, 2012