https://doi.org/10.1051/epjconf/20134301007
Envelope loss of RGB/AGB stars and the formation of hot subdwarfs
Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatory of the Chinese Academy of Sciences, Kunming 650011, China
a e-mail: zhanwenhan@ynao.ac.cn
b e-mail: cxf@ynao.ac.cn
Low mass stars may lose their envelopes in the first giant branch (RGB) or the asymptotic giant branch (AGB) via envelope ejection (i.e. superwind). The envelope loss of AGB stars leads to the formation of carbon-oxygen (CO) white dwarfs (WDs), while the envelope loss of AGB stars may lead to the formation of helium WDs. We mainly focus here on where a RGB/AGB star loses its envelope during its evolution and we show the inital - final mass relation. We also propose a possible channel for the formation of single hot subdwarf stars, in which an old metal-rich RGB star with positive envelope binding energy may lose its envelope and the naked helium core gets ignited to become a hot subdwarf. We also review the well-established Han et al. scenario for the formation of hot subdwarf stars, in which binary interactions lead to the formation of both single and binary hot subdwarfs. By detailed binary evolution calculations, we show that PG 1018-047, a hot subdwarf binary with a main sequence companion and a very long orbital period of 756 d, is explained naturally from the stable RLOF channel in the Han et al. scenario.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.