https://doi.org/10.1051/epjconf/20134714002
The dispersal of protoplanetary discs
1 University Observatory Munich, Scheinerstr. 1, 81679 München, Germany
2 Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, 85748 Garching, Germany
a e-mail: ercolano@usm.lmu.de
Protoplanetary discs are a natural consequence of the star formation process and as such are ubiquitous around low-mass stars. They are fundamental to planet formation as they hold the reservoir of material from which planets form. Their evolution and final dispersal and the timescales that regulate these process are therefore of particular interest. In this contribution I will review the observational evidence for the dispersal of discs being dominated by two timescales and for the final dispersal to occur quickly and from the inside out. I will discuss the current theoretical models, including X-ray photoevaporation, showing that the latter provides a natural explanation to the observed behaviour and review supporting and contrasting evidence. I will finally introduce a new mechanism based on the interaction between planet formation and photoevaporation that may explain a particular class of transition discs with large inner holes and high accretion rates that are problematic for photoevaporation models and planet formation models alone.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.