https://doi.org/10.1051/epjconf/20147100138
Highlights from the Daya Bay Neutrino Experiment
Department of Engineering Physics, Tsinghua University, Beijing, China
a e-mail: wangzhe-hep@tsinghua.edu.cn
Published online: 29 April 2014
With an understanding of the energy response of the anti-neutrino detectors, the Daya Bay collaboration presents new results using gadolinium-neutron capture: sin2 2θ13 = 0.108 ± 0.028 and |Δmee2| = 2.55−0.18+0.21 × 10−3 eV2 with only the distortion information of the neutrino energy spectrum shape, and sin2 2θ13 = 0.090−0.009+0.008 and |Δmee2| = 2.59−0.20+0.19 10−3 eV2 with both the shape and event rate information. It is also demonstrated that a clean inverse beta decay sample can be extracted using hydrogen-neutron capture, which is now being used for neutrino oscillation measurement. The supernova online trigger is designed and implemented, which can provide about 100% efficiency for all SN1987A-scale supernova bursts within the Milky Way.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.