https://doi.org/10.1051/epjconf/20147509002
Local probing of multiferroics: First-principles study of hyperfine parameters in YMnO3 and YMn2O5
1 Departamento de Física and CICECO, 3810-093 Universidade de Aveiro, Portugal
2 Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2686-953 Sacavém, Portugal
3 CNR-SPIN, 67100 L’Aquila, Italy
4 Departamento de Engenharia de Materiais e Cerâmica and CICECO, 3810-093 Universidade de Aveiro, Portugal
a Corresponding author: joaonsg@ua.pt
Published online: 3 July 2014
We model the ferroelectric and paraelectric phases in the YMnO3 and YMn2O5, compounds with discussion of the hyperfine parameters at the atomic nuclei: electric field gradient and magnetic hyperfine field, using first-principles density functional theory FP-L/APW+lo method (WIEN2K code). The differences of the changes in hyperfine properties and their correlation due to the onset of polarization in both cases reveal their sensitivity to the different electronic densities changes due to ferroelectricity. In the case of YMnO3 the greater changes appear in the Y and O atoms, while in YMn2O5, where the polarization is induced by a magnetic transition, the parameters at Mn and its bonded O atoms are changed the most. The sensitivity of the parameters to different degrees of approximation in calculations is also discussed.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.