https://doi.org/10.1051/epjconf/20159504063
The new spin physics program of the COMPASS experiment
LIP - Laboratório de Instrumentação e Física Experimental de Partículas, Av. Elias Garcia 14, 1º 1000 Lisboa, Portugal
a e-mail: lsilva@lip.pt
b On behalf of the COMPASS Collaboration.
Published online: 29 May 2015
The COMPASS experiment, at CERN SPS, has been compiling for more than a decade successful and precise results on nucleon structure and hadron spectroscopy, leading to statistical errors much smaller than previously measured. The new COMPASS spin physics program, starting this year, aims to a rather complete nucleon structure description; this new representation goes beyond the collinear approximation by including the quark intrinsic transverse momentum distributions. The theoretical framework, for this new picture of the nucleon, is given by the Transverse Momentum Dependent distributions (TMDs) and by the Generalised Parton Distributions (GPDs). The TMDs, in particular Sivers, Boer-Mulders, pretzelosity and transversity functions will be obtained through the polarised Drell-Yan process, for the first time. The results will be complementary to those already obtained via polarised Semi-Inclusive Deep Inelastic Scattering (SIDIS). Also unpolarised SIDIS will be studied, allowing the knowledge improvement of the strange quark PDF and the access to the kaon fragmentation functions (FFs). Deeply Virtual Compton Scattering (DVCS) off an unpolarised hydrogen target will be used to study the GPDs, in a kinematic region not yet covered by any existing experiment.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.