https://doi.org/10.1051/epjconf/201611402152
Maximization of integral outlet quantities of an axisymmetric synthetic jet actuator based on a loudspeaker
Institute of Thermomechanics, AS CR
a e-mail: kordik@it.cas.cz
Published online: 28 March 2016
The goal of this paper is to find an optimal nozzle size of an axisymmetric synthetic jet actuator based on a loudspeaker. The desirable maximized output quantities are: volumetric flow, momentum flux, and kinetic energy flux. To evaluate these quantities velocity profiles were measured using a hot-wire probe at the actuator nozzle exit. Six different nozzle diameters and three supplied real power levels were tested to find the maxima of the quantities. The actuator operated always at resonance during experiments. It was found out that the momentum flux and the kinetic energy flux reach distinguishable local maxima at particular diameters of the nozzle. Besides, the maxima of the particular quantities do not coincide and the best nozzle size slightly increases with the supplied real power to the actuator.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.