https://doi.org/10.1051/epjconf/201713502003
Ultimate precision in cosmic-ray radio detection — the SKA
1 IKP, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe, Germany
2 School of Physics & Astronomy, Univ. of Manchester, Manchester M13 9PL, United Kingdom
3 Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
4 EKP, Karlsruher Institut für Technologie, Kaiserstr. 12, 76131 Karlsruhe, Germany
5 Subatech, 4 rue Alfred Kastler, 44307 Nantes cedex 3, France
6 Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, Nançay, France
7 CSIRO Astronomy & Space Science, 2122 NSW, Australia
8 Max-Planck-Institut für Astrophysik, Karl-Schwarzschildstr. 1, 85748 Garching, Germany
9 Dept. of Astrophysics/IMAPP, Radboud Univ. Nijmegen, 6500 GL Nijmegen, The Netherlands
10 Netherlands Institute for Radio Astronomy (ASTRON), 7990 AA Dwingeloo, The Netherlands
11 ECAP, Univ. of Erlangen-Nuremberg, 91058 Erlangen, Germany
12 Department of Physics & Astronomy, University of California, Irvine, CA 92697, USA
13 Kernfysisch Versneller Instituut, Univ. of Groningen, 9747 AA Groningen, The Netherlands
14 Interuniversity Institute for High-Energy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
15 Istituto di Radioastronomy, INAF, via P. Gobetti, Bologna, 4012, Italy
16 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA, 6102, Australia
* e-mail: tim.huege@kit.edu
Published online: 15 March 2017
As of 2023, the low-frequency part of the Square Kilometre Array will go online in Australia. It will constitute the largest and most powerful low-frequency radio-astronomical observatory to date, and will facilitate a rich science programme in astronomy and astrophysics. With modest engineering changes, it will also be able to measure cosmic rays via the radio emission from extensive air showers. The extreme antenna density and the homogeneous coverage provided by more than 60,000 antennas within an area of one km2 will push radio detection of cosmic rays in the energy range around 1017 eV to ultimate precision, with superior capabilities in the reconstruction of arrival direction, energy, and an expected depth-of-shower-maximum resolution of < 10 g/cm2.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.