https://doi.org/10.1051/epjconf/201714004006
Clustering impact regime with shocks in freely evolving granular gas
Graduate School of Engineering, Nagoya Institute of Technology, 466-8555, Japan
* e-mail: isobe@nitech.ac.jp
Published online: 30 June 2017
A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff’s law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between “clusters” spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of “cluster impact” during the aggregation process of clusters.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.