https://doi.org/10.1051/epjconf/201714602019
Early applications of the R-matrix SAMMY code for charged-particle induced reactions and related covariances
Oak Ridge National Laboratory, Oak Ridge, TN, USA
a e-mail: pignimt@ornl.gov
* Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Published online: 13 September 2017
The SAMMY code system is mainly used in nuclear data evaluations for incident neutrons in the resolved resonance region (RRR), however, built-in capabilities also allow the code to describe the resonance structure produced by other incident particles, including charged particles. (α,n) data provide fundamental information that underpins nuclear modeling and simulation software, such as ORIGEN and SOURCES4C, used for the analysis of neutron emission and definition of source emission processes. The goal of this work is to carry out evaluations of charged-particle-induced reaction cross sections in the RRR. The SAMMY code was recently used in this regard to generate a Reich-Moore parameterization of the available 17,18O(α,n) experimental cross sections in order to estimate the uncertainty in the neutron generation rates for uranium oxide fuel types. This paper provides a brief description of the SAMMY evaluation procedure for the treatment of 17,18O(α,n) reaction cross sections. The results are used to generate neutron source rates for a plutonium oxide matrix.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.