https://doi.org/10.1051/epjconf/201714611039
Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons
1 Nuclear Transmutation Division Facility and Application Development Section J-PARC/JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
2 Materials and Life Science Division Neutron Source Section J-PARC/JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
a e-mail: meigo.shinichiro@jaea.go.jp
Published online: 13 September 2017
To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x)7Be, Al(p,x)22Na-22 and Al(p,x)24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM) with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.