https://doi.org/10.1051/epjconf/201817205003
Recent ATLAS measurements of azimuthal anisotropies in pp and p+Pb collisions
Institute of Nuclear Physics PAS, ul. Radzikowskiego 152, 31-342 Kraków, Poland
* e-mail: adam.trzupek@ifj.edu.pl
Published online: 26 January 2018
The azimuthal anisotropies of particle yields observed in relativistic heavy-ion collisions are considered as an evidence of the formation on a deconfined Quark-Gluon Plasma produced in these collisions. Interestingly, recent measurements in pp and p+Pb systems from ATLAS and other experiments show similar features as those observed in A+A collisions, indicating the possibility of the production of such a deconfined medium in smaller collision systems. This report presents a summary of the recent ATLAS results on azimuthal anisotropies in pp collisions at 5.02 TeV and 13 TeV, p+Pb collisions at 5.02 TeV and 8.16 TeV as well as in peripheral 2.76 TeV Pb+Pb interactions. It includes measurements of two-particle correlations of charged particles as well as correlations of heavy flavor muons and charged particles in Δϕ and Δη, with a template fitting procedure used to subtract the dijet contributions. Additionally, measurements of cumulants of multi-particle correlations, cn{2-8} are presented. The two-particle correlations and cumulants confirm a presence of collective phenomena in these collision systems, but the results on four-particle cumulants for pp collisions do not demonstrate a similar collective behaviour. However, the cumulant measurements in small collision systems can be biased by non-flow correlations. A novel subevent cumulant method that suppresses the contribution of non-flow effects was proposed recently by ATLAS allowing to measure significant azimuthal anisotropies in both pp and p+Pb collisions.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).