https://doi.org/10.1051/epjconf/201817402002
Fast Timing for High-Rate Environments with Micromegas
1
CEA, IRFU, Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette 91191, France
2
European Organization for Nuclear Research (CERN), Genève 1211, Switzerland
3
Laboratoire Interactions, Dynamiques et Lasers (LIDyL) CEA, CNRS, Université Paris-Saclay, Gif sur Yvette 91191, France
4
Princeton University, Princeton, New Jersey 08544, USA
a e-mail: thomas.papaevangelou@cea.fr
Published online: 21 February 2018
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate aMicromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkovradiator front window, which produces sufficient UV photons to convert the ∼100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ∼50 primary photoelectrons, using a bulk Micromegas readout.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).