https://doi.org/10.1051/epjconf/201817505023
More on heavy tetraquarks in lattice QCD at almost physical pion mass
1
Department of Physics & Astronomy, York University, Toronto, ON M3J 1P3, Canada
2
Department of Mathematics & Statistics, York University, Toronto, ON M3J 1P3, Canada
3
CSSM, University of Adelaide, Adelaide SA 5005, Australia
* Speaker, e-mail: afranc@yorku.ca
Published online: 26 March 2018
We report on our progress in studying exotic, heavy tetraquark states, qq′ Q̅Q̅′. Using publicly available dynamical nf = 2 + 1 Wilson-Clover gauge configurations, generated by the PACS-CS collaboration, with pion masses ≃ 164, 299 and 415 MeV, we extend our previous analysis to heavy quark components containing heavier than physical bottom quarks Q̅Q̅′ = b̅′b̅′ or Q̅Q̅′ = b̅b̅′, charm and bottom quarks c̅b̅ and also only charm quarks c̅ c̅. Throughout we employ NRQCD and relativistic heavy quarks for the heavier than bottom, bottom and charm quarks. Using our previously established diquark-antidiquark and meson-meson operator basis we comment in particular on the dependence of the binding energy on the mass of the heavy quark component Q̅Q̅, with heavy quarks ranging from mQ = 0:85… 6.3 · mb. In the heavy flavor non-degenerate case, Q̅Q̅′, and especially for the tetraquark channel udc̅d̅, we extend our work to utilize a 3 × 3 GEVP to study the ground and threshold states thereby enabling a clear identification of possible binding. Finally, we present initial work on the Q̅Q̅′ = c̅c̅ system where a much larger operator basis is available in comparison to flavor combinations with NRQCD quarks.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).