https://doi.org/10.1051/epjconf/201818002084
New boundary conditions for fluid interaction with hydrophobic surface
Brno University of Technology, Faculty of Mechanical Engineering, Victor Kaplan Department of Fluids Engineering, Technická 2896/2, 61669 Brno, Czech Republic
* Corresponding author: fialova@fme.vutbr.cz
Published online: 4 June 2018
Solution of both laminar and turbulent flow with consideration of hydrophobic surface is based on the original Navier assumption that the shear stress on the hydrophobic surface is directly proportional to the slipping velocity. In the previous work a laminar flow analysis with different boundary conditions was performed. The shear stress value on the tube walls directly depends on the pressure gradient. In the solution of the turbulent flow by the k-ε model, the occurrence of the fluctuation components of velocity on the hydrophobic surface is considered. The fluctuation components of the velocity affect the size of the adhesive forces. We assume that the boundary condition for ε depending on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for turbulent flow on the hydrophobic surface.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).