https://doi.org/10.1051/epjconf/201818302002
Dynamic crack arrest capability of some metallic alloys and polymers
1
Université de Toulouse, ISAE-SUPAERO, Institut Clément Ader (CNRS 5312),
Toulouse,
France
2
National Defense University of Malaysia,
Kuala Lumpur,
Malaysia
* Corresponding author : patrice.longere@isae.fr
Published online: 7 September 2018
We are here interested in the crack arrest capability under impact loading of metals and polymers used as structural and/or protection materials in aerospace engineering. Kalthoff and Winkler-type impact tests are carried out to that purpose on high strength AA7175 aluminum alloy and shock resistant polymethyl methacrylate (PMMA). Impact tests are carried out at impact velocities ranging from 50 m/s to 250 m/s and high speed camera is used to record the different steps of the failure process. For AA7175, early Mode II shear failure followed by late Mode I opening failure are seen. The premature ductile failure of the alloy is shown to result from a preceding stage of dynamic localization in the form of adiabatic shear bands. Impact tests on shock-resistant PMMA evidence the brittle feature of the material failure. It is notably shown that the higher the impact velocity (in the range 50-100 m/s) the larger the number of fragments. Moreover, depending on the impact velocity, changes in the crack path and thus in the mechanisms controlling the PMMA dynamic fracture can be seen.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.