https://doi.org/10.1051/epjconf/201818303002
Structure / Property (Constitutive and Dynamic Strength / Damage) Behavior of Additively Manufactured Tantalum
Los Alamos National Laboratory,
Los Alamos,
New Mexico,
87545,
USA
* Corresponding author: rusty@lanl.gov
Published online: 7 September 2018
For Certification and qualification of an engineering component generally involves meeting engineering and physics requirements tied to its functional requirements. In this paper, the results of a study quantifying the microstructure, mechanical behavior, and the dynamic damage evolution of Tantalum (Ta) fabricated using an EOS laser-powder-bed machine are presented. The microstructure and quasi-static mechanical behavior of the AM-Ta is detailed and compared / contrasted to wrought Ta. The dynamic damage evolution and failure response of the AM-Ta material, as well as wrought Ta, was probed using flyer-plate impact driven spallation experiments. The differences in the spallation response between the AM and wrought Ta were measured using in-situ velocimetry as well as post-mortem quantification of damage in “soft-recovered” samples. The damage evolution of the AM and wrought Ta were characterized using both optical metallography and electron-backscatter diffraction.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.