https://doi.org/10.1051/epjconf/201818503015
Atomic ordering and coercive force of nanocrystalline Fe-Co alloy films
Krasnoyarsk Institute of Railway Engineering, 89, L.Ketskhoveli St, Krasnoyarsk, 660028, Russia
Published online: 4 July 2018
In single crystal films of the Fe0,5Co0,5 alloys grown by the method of vacuum condensation, a metastable condition may be received that is similar to the completely disordering condition. Approximately during ten days after the condensation in the film at the room temperature the short range and then long range atomic ordering is developed. Simultaneously the changes of magnetic anisotropy, electroresistance and coercive force of the films were investigated. This investigations show that the appearance of the shot range atomic ordering increases the electroresistance of films and the long range atomic ordering reduces it. The dependence of coercive force from time to time at room temperature atomic ordering films Fe0,5Co0,5 alloys, and Fe0,75Co0,25. Found that the biggest change Hc (double) is observed in single-crystal films when changing mechanism of magnetization reverse. Most is a consequence of the changes to the crystallographic anisotropy.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.