https://doi.org/10.1051/epjconf/201818504025
Electomagnetic absorption of composites based on epoxy resin and metallic iron nanoparticles
1
Ural Federal University, Ekaterinburg, Russian Federation
2
Institute of Electrophysics UD RAS, Ekaterinburg, Russian Federation
*
Corresponding author: lipka-lipka-lipka@yandex.ru
Published online: 4 July 2018
The heat losses originated from the electro-magnetic absorption in magnetic epoxy-based composites with embedded metallic iron nanoparicles were studied by Calvet microcalorimetry. Iron magnetic nanoparticles (MNPs) were synthesized by electrical explosion of wire (EEW) method; they were non-agglomerated, spherical in shape and had a weight average diameter 85 nm. Composites based on the cured epoxy-dian resin contained MNPs in weight content varying from 10% up to 70% . To study the heat loss in alterating magnetic field commercial Calvet microcalorimeter was equiped by two coils in the serial connection placed in the calorimeter cells; one of the coils contained a sample of composite the other was a reference. The electromagnetic adsorption was studied in the alternating magnetic field up to 1700 A /m in 67 – 214 kHz frequency range. The measured values of the specific power losses revealed linear dependence on iron MNPs content in composite and non-linear increasing function of the field frequency.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.