https://doi.org/10.1051/epjconf/201819304010
Neutron-rich isotopes from 238U(n,f) and 232Th(n,f) studied with the ν-ball spectrometer coupled to the LICORNE neutron source
Institut de Physique Nucleaire d’Orsay, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
* Corresponding author: wilson@ipno.in2p3.fr
Published online: 14 November 2018
We have recently successfully demonstrated a new technique for production and study of many of the most exotic neutron-rich nuclei at moderate spins. LICORNE, a newly developed directional inversekinematic fast neutron source at the ALTO facility of the IPN Orsay, was coupled to the MINIBALL γ-ray spectrometer to study very neutron rich nuclei using the 238U(n,f) reaction. This reaction and 232Th(n,f), are the most neutron-rich fission production mechanisms achievable and can be used to simultaneously populate hundreds of neutron-rich nuclei up to spins of ~16h. High selectivity in the experiment was achieved via triple γ-ray coincidences and the use of a 400 ns period pulsed neutron beam, a technique which is unavailable to other reaction mechanisms such as spontaneous fission. The pulsing allows time correlations to be exploited to separate delayed γ rays from isomeric states and supresses unwanted γ-rays from beta decay. In Autumn 2017, the ν-ball array will be operational at the ALTO facility of the IPN Orsay. This high efficiency hybrid Ge-LaBr3 spectrometer based around 24 clover Ge detectors, 10 co-axial Ge detectors and 20 LaBr3 scintillators will help to further refine the technique and achieve a large increase in the current observational limit.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.