https://doi.org/10.1051/epjconf/201920102005
A combined DFT/topological analysis approach for modeling disordered solid electrolytes
1
Samara Center for Theoretical Materials Science, Samara University, Samara, Russia
2
Samara Center for Theoretical Materials Science, Samara State Technical University, Samara, Russia
* Corresponding author: eremin_roman@inbox.ru
Published online: 4 February 2019
In the scope of this study, the Ag2S·CdS·3SnS2 solid electrolyte disordered in the Cd/Sn sublattice is explored by means of the approach involving configurational space (CS) setting and first-principles calculations. Within the density functional theory calculations on the CS, the absolute differences in Ag vacancy formation energies up to 2.6 eV/cell were obtained for possible Cd/Sn dispositions. Subsequently, silver ion migration was modeled using the nudged elastic band method. The migration energies in the range of 0.250 to 2.993 eV/cell were obtained. By application of topological descriptors, namely, the relative disposition of Cd atoms and the number of Cd atoms in the vicinity of Ag vacancy, the reliable correlations were obtained between the Cd/Sn relative disposition and the calculated energy characteristics.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.