https://doi.org/10.1051/epjconf/201920507010
Population inversion in laser-driven N2+
Department of Chemistry, the University of Tokyo, Japan
* Corresponding author: kaoru@chem.s.u-tokyo.ac.jp
Published online: 16 April 2019
The time-dependent population transfer process of N2+ generated in an intense laser pulse has been investigated using the quasi-stationary Floquet theory by assuming that N2+ experiences an intense laser pulse with the sudden turn-on. A light-dressed B state is formed with a significant amount of population when pulse is suddenly turned on and is adiabatically transformed to the vibrational ground state (v = 0) of the field-free B state when the pulse vanishes. In addition, a part of the population is transferred to the electronically excited A state through one-photon resonance, which also contributes to decreasing the final population in the X state, facilitating the population inversion between the B state and the X state.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.