https://doi.org/10.1051/epjconf/201920509017
Time-resolved high-harmonic spectroscopy of ultrafast ring-opening of 1,3-cyclohexadiene
Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
* Corresponding author: kaneshima@eng.hokudai.ac.jp
Published online: 16 April 2019
We report, to the best of our knowledge, the first time-resolved high-harmonic spectroscopy (TR-HHS) study of a chemical bond rearrangement. We investigate the transient change of the high-harmonic signal from 1,3-cyclohexadiene (CHD), which undergoes ring-opening and isomerizes to 1,3,5-hexatriene (HT) upon photoexcitation. By associating the variation in the harmonic yield to the changes in the electronic state and vibrational frequencies of the molecule due to isomerization, we find that the CHD excited via two-photon absorption of 3.1 eV photons isomerizes to HT, i.e., ring-opening occurs, around 400 fs after the excitation. The present results demonstrate that TR-HHS, which can track both electronic and nuclear dynamics, is a powerful tool for studying ultrafast photochemical reactions.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.