https://doi.org/10.1051/epjconf/201920814004
High-energy gamma- and cosmic-ray observations with future space-based GAMMA-400 gamma-ray telescope
1
Lebedev Physical Institute, RU-119991 Moscow, Russia
2
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), RU-115409 Moscow, Russia
3
Scientific Research Institute for System Analysis, RU-117218 Moscow, Russia
* Corresponding author e-mail: tnp51@yandex.ru
Published online: 10 May 2019
The future space-based GAMMA-400 gamma-ray telescope will be installed on the Navigator platform of the Russian Astrophysical Observatory. A highly elliptical orbit will provide observations for 7-10 years of many regions of the celestial sphere continuously for a long time (~ 100 days). GAMMA-400 will measure gamma-ray fluxes in the energy range from ~ 20 MeV to several TeV and electron + positron fluxes up to ~ 20 TeV. GAMMA-400 will have an excellent separation of gamma rays from the background of cosmic rays and electrons + positrons from protons and an unprecedented angular (~ 0.01° at Eγ = 100 GeV) and energy (~ 1% at Eγ = 100 GeV) resolutions better than for Fermi-LAT, as well as ground-based facilities, by a factor of 5-10. Observations of GAMMA-400 will provide new fundamental data on discrete sources and spectra of gamma-ray emission and electrons + positrons, as well as the nature of dark matter.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.