https://doi.org/10.1051/epjconf/201921201009
Simulation of physics background in Super c-tau factory detector
1
Budker Institute of Nuclear Physics, 11 av.Lavrentiev, 630090, Novosibirsk, Russia
2
Novosibirsk State University, 1 Pirogova str., 630090, Novosibirsk, Russia
* e-mail: L.I.Shekhtman@inp.nsk.su
Published online: 17 June 2019
Simulation of background particle fluxes generated by colliding beams is performed with FLUKA package for the Super C-Tau factory Detector (SCTD). Two processes are considered as main sources of luminosity generated background: two-photon production of electron-positron pairs and Bha-Bha scattering with bremsstrahlung photon emission (radiative Bha-Bha). The SCTD geometry is described corresponding to the last version of the Conceptual Design Report. The magnetic field based on the calculation in ANSYS is introduced in the model. Main results of the simulation for beam energy of 3 GeV, luminosity of 1035 cm−2s−1 and 1.5 T magnetic field are the following: charged particle fluence in the region of the Inner Tracker (radius 5cm -20 cm, Z between -30cm and 30 cm) is between 105 particles/(cm2s) and ∼103 particles/(cm2s); 1-MeV neutron equivalent fluence for Si in the regions corresponding to electronics of the Inner Tracker and the Drift Chamber is below 1011 n/(cm2y) and absorbed dose is below 100 Gy/y in the hottest regions of the detector.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.