https://doi.org/10.1051/epjconf/201921402021
Tracking system performance of the BM@N experiment
Joint Institute for Nuclear Research, Joliot Curie 6,141980 Dubna,
Moscow region,
Russia
* Corresponding author: nvoytish@jinr.ru
Published online: 17 September 2019
The Baryonic Matter at Nuclotron (BM@N) experiment represents the first phase of the Nuclotron-based Ion Collider Facility (NICA), a mega-science project at the Joint Institute for Nuclear Research. It is a fixed target experiment built for studying nuclear matter in conditions of extreme density and temperature. The tracking system of the BM@N experiment consists of three main detector systems: Multiwire Proportional Chambers situated before the magnet, Gas Electron Multipliers placed inside the magnet and Drift Chambers placed after the magnet. These systems provide the reconstruction of charged particles’ trajectories and their momentum in the magnetic field. This information is further used by Time of Flight detectors for the particle identification procedure. The system’s performance is reviewed and the spatial resolutions along with efficiencies of the detectors are estimated using the data collected in the recent physics runs of the Nuclotron.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.