https://doi.org/10.1051/epjconf/201922202007
Optimization of a light collection in the Shashlyk-type electromagnetic calorimeter with projective geometry for the NICA/MPD experiment.
1
NRC KI - IHEP,
142281,
Protvino
Russia
2
JINR,
141980
Dubna,
Russia
* e-mail: durum@ihep.ru
Published online: 19 November 2019
The MPD spectrometer at the NICA collider complex is currently under construction in Dubna. The main goal of the experiment is to obtain fundamental knowledge about the properties of hot and dense baryonic matter formed in heavy-ion collisions in the energy range of (4-11) A*GeV. Crucial detector of the MPD experiment is a large-sized barrel electromagnetic calorimeter (ECal), which (together with the tracking system) will provide unique opportunities for the measurement and identification of a wide variety of charged and neutral particles carrying information about early stages of the interactions. Important tasks related to the construction of the Shashlyk-type MPD ECal are the development, production and study of the calorimeter modules with projective geometry. To improve performance of ECal, the light collection in the modules should be optimized. We present the methods and technologies developed to increase the light yield with different types and configurations of reflectors on the end of wavelengths shifting fibers. Expected characteristics of the calorimeter in detection of photons and electrons are presented and discussed
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.