https://doi.org/10.1051/epjconf/201922203013
ϒ(3S) and χb(3P) production and polarization in the NRQCD with kT–factorization
1
Faculty of Physics, Lomonosov Moscow State University,
119991,
Moscow,
Russia
2
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
119991
Moscow,
Russia
3
Joint Institute for Nuclear Research,
141980
Dubna, Moscow Region,
Russia
* e-mail: nizami.abdulov@gmail.com
Published online: 19 November 2019
The ϒ(3S) production and polarization at high energies is studied in the framework of kT–factorization approach. Our consideration is based on the non-relativistic QCD formalism for bound states formation and off-shell production amplitudes for hard partonic subprocesses. The transverse momentum dependent (TMD, or unintegrated) gluon densities in a proton were derived from the CiafaloniCatani-Fiorani-Marchesini (CCFM) evolution equation as well as from the Kimber–Martin–Ryskin (KMR) prescription. Treating the nonperturbative color octet transitions in terms of the mulitpole radiation theory and taking into account feed-down contributions from radiative χb(3P) decays, we extract the corresponding non-perturbative matrix elements for ϒ(3S) and χb(3P) mesons from a combined fit to ϒ(3S) transverse momenta distributions measured by the CMS and ATLAS Collaborations at the LHC energies √s = 7 and 13 TeV and central rapidities. Then we apply the extracted values to investigate the polarization parameters λθ, λφ and λθφ, which determine the ϒ(3S) spindensity matrix. Our predictions have a good agreement with the currently available data within the theoretical and experimental uncertainties.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.