https://doi.org/10.1051/epjconf/202023203003
Measuring precise fusion cross sections using an 8T superconducting solenoid
Department of Nuclear Physics, Research School of Physics, The Australian National University, ACT 2601, Australia
* e-mail: lauren.bezzina@anu.edu.au
Published online: 6 April 2020
A novel fusion-evaporation residue separator based on a gas-filled superconducting solenoid has been developed at the Australian National University. Though the transmission efficiency of the solenoid is very high, precision cross sections measurements require this efficiency to be accurately known and vitally, requires knowledge of the angular distribution of the evaporation residues. We have developed a method to deduce the angular distribution of the evaporation residues from the laboratory-frame velocity distribution of the evaporation residues transmitted by the solenoid. The method will be discussed, focusing on benchmarking examples for 34S+89Y, where the angular distributions have been independently measured using a velocity filter (A. Mukherjee et al., Phys. Rev. C. 66, 034607 (2002)) . The establishment of this method now allows the novel solenoidal separator to be used to obtain reliable, precise fusion cross-sections.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.