https://doi.org/10.1051/epjconf/202023706014
Remote Sensing of Atmospheric Turbulence Profiles by Laser Guide Stars
The State Key Laboratory of Laser Interaction with Matter, Xi’an 710024, P. R. China
Published online: 7 July 2020
Ranged-resolved profiles of atmospheric turbulence are necessary and important for many applications in astronomical and adaptive optics communities. In order to characterize the vertical atmospheric structure in field, a technique is put forward to remote sensing ranged-resolved profiles of atmospheric turbulence by combined with laser guide stars and differential image motion method. Laser guide stars are formed at several successive altitudes by projecting pulsed laser, returned signals of images are received by a optical system with two receiving telescopes, and variance of centroids′ distance is derived from the images with two spots at the same altitude. So, based on a inversion algorithm, atmospheric turbulence profiles are retrieved from differential image motion variance of distance of centroids at various altitudes. The structure constants of refractive index of atmosphere range from 10-14m-2/3 at lower altitudes to 10-16m-2/3 at higher altitudes are remote sensed experimentally. The results show it is a effective method that combined laser guide stars with differential image motion method and could sense atmospheric turbulence profiles remotely in real time.
Key words: atmospheric turbulence profiles / remote sensing / atmospheric optics / laser guide stars / differential image motion method
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.