https://doi.org/10.1051/epjconf/202023917022
A finite element simulation of transition-edge sensor for measuring kinetic energy of fission fragments
Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, 100084, China
* Corresponding author: wxl17@mails.tsinghua.edu.cn
Published online: 30 September 2020
It is necessary to accurately measure the kinetic energy of fission fragments when using the Time-Of-Flight method to determine the mass of fission fragments. The ionization chamber and the Au-Si surface barrier detector are conventional kinetic-energy detectors, but their energy resolution is not sufficient to achieve a mass resolution of 1 amu. The Transition-Edge Sensor (TES) is a cryogenic calorimeter that can be used to measure the kinetic energy by measuring the temperature variation induced by the energy of the incident particle, with a typical resolution of 0.02% of TES detector can be achieved[1]. In this article, we designed a TES to measure the kinetic energy of fission fragments, and the signals of this TES with different incident particle positions, kinetic energy, and thermal conductivity were simulated using ANSYS. Therefore, we verified the feasibility of the TES and improved the count rate of the TES to 100cps.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.