https://doi.org/10.1051/epjconf/202024007010
Nonlinear Dirac Neutrino Oscillations
National University of Singapore Department of Physics, 21 Lower Kent Ridge Rd, Singapore 119077
* e-mail: zhihao.quek16@sps.nus.edu.sg
Published online: 21 August 2020
Neutrino oscillations are a possible way to probe beyond Standard Model physics. The propagation of Dirac neutrinos in a massive medium is governed by the Dirac equation modified with an effective Hamiltonian that de- pends on the number density of surrounding matter fields. At the same time, quantum nonlinearities may contribute to neutrino oscillations by further mod- ifying the Dirac equation. A possible nonlinearity is computationally studied using Mathematica at low energies. We find that the presence of a uniform, static background matter distribution may significantly alter the oscillation am- plitude and wavelength; the considered nonlinearity may further reduce both oscillation amplitude and wavelength. In addition, the presence of matter al- lows the effects of the nonlinearity to be more readily observed for the chosen background densities and neutrino energy.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.