https://doi.org/10.1051/epjconf/202024201009
Prompt Fission Gamma-Ray Measurements at UML Research Reactor
1 Physics and Applied Physics PhD candidate, University of Massachusetts-Lowell 01854, USA
2 Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos 87545, USA
3 Physics and Applied Physics Faculty, University of Massachusetts-Lowell 01854, USA
Published online: 28 September 2020
Neutron-induced fission of 235U was studied at the thermal column of the UMass Lowell 1 MW Research Reactor. A collimated, 2.25-inch diameter beam of thermal neutrons with the flux of ~5x105 n/cm2/sec induced fission reaction on a plate of low-enriched uranium with the areal density ~25 mg/cm2 of 235U. We have used the prompt fission-neutron tagging method to identify the fission reaction in the off-line analysis. The method employs the pulse-shape discrimination of neutrons and gamma-ray events in stilbene scintillator and enables identification of coincidence events of prompt fission gamma-rays and prompt fission neutrons in coincidence time intervals less than 20-30 ns. The prompt gamma-ray radiation was detected using two co-linear NaI(Tl) detectors. The measured spectra of prompt-fission gamma rays between 150 keV and 6 MeV are presented. The results from these initial measurements demonstrate the feasibility of the experimental method. Future measurements with extended arrays of detectors are planned.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.