https://doi.org/10.1051/epjconf/202124721003
MONTE CARLO-BASED DYNAMIC CALCULATIONS OF STATIONARY PERTURBATIONS
Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Gothenburg, Sweden
demaz@chalmers.se
andreastatidis@gmail.com
vinai@chalmers.se
Published online: 22 February 2021
Capitalizing on some earlier work, this paper presents a novel Monte Carlo-based approach that allows estimating the neutron noise induced by stationary perturbations of macroscopic cross-sections in the frequency domain. This method relies on the prior computation using Monte Carlo of modified Green’s functions associated to the real part of the dynamic macroscopic cross-sections, mimicking equivalent subcritical problems driven by external neutron sources. Once such modified Green’s functions are estimated, the neutron noise induced by any type of perturbations can be recovered, by solving a linear algebra problem accounting for the interdependence between the real and imaginary parts of the governing balance equations. The newly derived method was demonstrated on a large homogeneous test system and on a small heterogeneous test system to provide results comparable to a diffusion-based solver specifically developed for neutron noise applications. The new method requires the specification by the user of the real part of the Fourier transform of the macroscopic cross-sections. This is accomplished using ACE-formatted cross-section files defined by the user. Beyond this input data preparation, no change to the Monte Carlo source code is necessary. This represents the main advantage of the proposed method as compared to similar efforts requiring extensive modifications to the Monte Carlo source code.
Key words: neutron noise / simulations / Monte Carlo / Benchmark
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.