https://doi.org/10.1051/epjconf/202125103009
Integration of JUNO simulation framework with Opticks: GPU accelerated optical propagation via NVIDIA® OptiX™
Institute of High Energy Physics, CAS, Beijing, China
* Corresponding author and speaker on behalf of the JUNO collaboration. e-mail: simon.c.blyth@gmail.com
Published online: 23 August 2021
Opticks is an open source project that accelerates optical photon simulation by integrating NVIDIA GPU ray tracing, accessed via NVIDIA OptiX, with Geant4 toolkit based simulations. A single NVIDIA Turing architecture GPU has been measured to provide optical photon simulation speedup factors exceeding 1500 times single threaded Geant4 with a full JUNO analytic GPU geometry automatically translated from the Geant4 geometry. Optical physics processes of scattering, absorption, scintillator reemission and boundary processes are implemented within CUDA OptiX programs based on the Geant4 implementations. Wavelength-dependent material and surface properties as well as inverse cumulative distribution functions for reemission are interleaved into GPU textures providing fast interpolated property lookup or wavelength generation. In this work we describe major recent developments to facilitate integration of Opticks with the JUNO simulation framework including on GPU collection effciency hit culling which substantially reduces both the CPU memory needed for photon hits and copying overheads. Also progress with the migration of Opticks to the all new NVIDIA OptiX 7 API is described.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.