https://doi.org/10.1051/epjconf/202225700035
Pressure profiles of distant Galaxy clusters with Planck-SPT data
1 Università degli studi di Roma ‘Tor Vergata’, Via della ricerca scientifica, 1 ; 00133 Roma, Italy
* e-mail: filippo.oppizzi@gmail.com
Published online: 17 January 2022
We present a full set of numerical tools to extract Galaxy Cluster pressure profiles from the joint analysis of Planck and South Pole Telescope (SPT) observations. Pressure profiles are powerful tracers of the thermodynamic properties and the internal structure of the clusters. Tracing the pressure over the cosmic times allows one to constraints the evolution of the cluster structure and the contribution of astrophysical phenomena. SPT and Planck are complementary to constrain the cluster structure at various spatial scales. The SPT cluster catalogue counts 677 cluster candidates up to redshift 1.7, it is a nearly mass-limited sample, an ideal benchmark to test cluster evolution. We developed a pipeline to first separate the cluster signal from the background and foreground components and then jointly fit a parametric profile model on a combination of Planck and SPT data. We validate our algorithm on a subsample of six clusters, common to the SPT and the CHEX-MATE catalogues, comparing the results with the profiles obtained from X-ray observations with XMM-Newton.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.