https://doi.org/10.1051/epjconf/202226608002
The comb waveguide: a new tool for strong interaction between atoms and light
1 Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
2 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, 75005 Paris, France
3 Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
* e-mail: fayardnikos@gmail.com
** e-mail: christophe.sauvan@institutoptique.fr
Published online: 13 October 2022
Coupling quantum emitters and nanostructures, in particular cold atoms and waveguides, has recently raised a large interest due to unprecedented possibilities of engineering light-matter interactions. However, the implementation of these promising concepts has been hampered by various theoretical and experimental issues. In this work, we propose a new type of periodic dielectric waveguide that provides strong interactions between atoms and guided photons with an unusual dispersion. We design an asymmetric comb waveguide that supports a slow mode with a quartic (instead of quadratic) dispersion and an electric field that extends far into the air cladding for an optimal interaction with atoms. We compute the optical trapping potential formed with two guided modes at frequencies detuned from the atomic transition. We show that cold Rubidium atoms can be trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well. For atoms trapped at this position, the emission into guided photons is largely favored, with a beta factor as high as 0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate.
© The Authors, published by EDP Sciences
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.