https://doi.org/10.1051/epjconf/202227201014
Determining the relaxation time from a temperature-dependent scan of the neutron spin-echo signal amplitude
Neutron Scattering Division, 37831 Oak Ridge, Tennessee, USA
* Corresponding author: mamontove@ornl.gov
Published online: 17 November 2022
Temperature-dependent scans of the neutron scattering intensity are commonly employed in high energy-resolution quasielastic measurements. Besides serving as a useful diagnostic tool for identifying the temperature range that could give rise to a measurable relaxation signal, such scans of the “elastic” (resolution-defined) intensity could be employed for determining the temperature at which the relaxation time in the system becomes equal to the resolution-defined characteristic time of the spectrometer measurement. This is a model-independent alternative to the “traditional” approach, when, at a given measurement temperature, the relaxation time in the system is obtained from fitting the full dynamic spectra with a model scattering function. Here we introduce the temperature-dependent scan of the neutron spin-echo signal amplitude. Using a well-characterized system with a complex relaxation pattern, we demonstrate that the relaxation time obtained from the approach proposed herein maps well on the previous “traditionally” measured relaxation times. Thus, despite monitoring a different variable (neutron spin-echo signal amplitude vs. neutron scattering intensity), the benefits of the model-free temperature-dependent scan approach, traditionally utilized in neutron time-of-flight and backscattering experiments, can be extended to measurements of the very slow relaxations assessable only by high-resolution neutron spin-echo.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.