https://doi.org/10.1051/epjconf/202227401003
Non-equilibrium evolution of quarkonium in medium in the open quantum system approach
Department of Physics, Kent State University, Kent, OH 44242, USA
* e-mail: mstrick6@kent.edu
Published online: 22 December 2022
In this proceedings contribution, I review recent work that aims to provide a more comprehensive and systematic understanding of bottomonium dynamics in the quark-gluon plasma using an open quantum system (OQS) approach that is applied in the framework of the potential non-relativistic QCD (pNRQCD) effective field theory and coupled to realistic hydrodynamical backgrounds that have been tuned to soft hadron observables. I review how the computation of bottomonium suppression can be reduced to solving a Gorini- Kossakowski-Sudarshan-Lindblad (GKSL) equation for the evolution of the bb̅ reduced density matrix, which includes both singlet and octet states plus medium-induced transitions between them at next-to-leading order (NLO) in the binding energy over temperature. Finally, I present comparisons of phenomenological predictions of the NLO OQS+pNRQCD approach and experimental data for bottomonium suppression and elliptic flow in LHC 5.02 TeV Pb-Pb collisions obtained using both smooth and fluctuating hydrodynamic initial conditions.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.